使用networkx在两个节点之间绘制多个边

use*_*576 9 python label graph edges networkx

我需要在两个节点之间绘制一个具有多个边(具有不同权重)的有向图.也就是说,我有节点A和B以及长度= 2的边(A,B)和长度= 3的(B,A).

我曾尝试使用G = nx.Digraph和G = nx.Multidigraph.当我绘制它时,我只能查看一个边缘而只能看到其中一个标签.有什么办法吗?

kco*_*kun 31

以下是如何获得类似于以下内容的结果: 最终图表

它的一些属性是:

  • 当两个节点之间只有一条边时,它是直的。
  • 标签完美地位于边缘的中间。
  • 当前的解决方案仅适用于有向图。不支持多重图、多重有向图和自循环。

设置它

以下几行是启动示例的初始代码

import matplotlib.pyplot as plt
import networkx as nx

G = nx.DiGraph()
edge_list = [(1,2,{'w':'A1'}),(2,1,{'w':'A2'}),(2,3,{'w':'B'}),(3,1,{'w':'C'}),
             (3,4,{'w':'D1'}),(4,3,{'w':'D2'}),(1,5,{'w':'E1'}),(5,1,{'w':'E2'}),
             (3,5,{'w':'F'}),(5,4,{'w':'G'})]
G.add_edges_from(edge_list)
pos=nx.spring_layout(G,seed=5)
fig, ax = plt.subplots()
nx.draw_networkx_nodes(G, pos, ax=ax)
nx.draw_networkx_labels(G, pos, ax=ax)
fig.savefig("1.png", bbox_inches='tight',pad_inches=0)
Run Code Online (Sandbox Code Playgroud)

结果是:

仅包含节点的图

绘制边缘

NetworkX 的功能draw_networkx_edges只能使用edgelist参数绘制边的子集。为了使用它,我们将边缘分组到两个列表中并分别绘制它们。感谢AMangipinto 的回答connectionstyle='arc3, rad = 0.1'

curved_edges = [edge for edge in G.edges() if reversed(edge) in G.edges()]
straight_edges = list(set(G.edges()) - set(curved_edges))
nx.draw_networkx_edges(G, pos, ax=ax, edgelist=straight_edges)
arc_rad = 0.25
nx.draw_networkx_edges(G, pos, ax=ax, edgelist=curved_edges, connectionstyle=f'arc3, rad = {arc_rad}')
fig.savefig("2.png", bbox_inches='tight',pad_inches=0)
Run Code Online (Sandbox Code Playgroud)

结果是:

没有标签的图表

绘制边缘标签

NetworkX 的函数draw_networkx_edge_labels假设边缘是直的,并且没有参数可以改变这一点。由于 NetworkX 是开源的,我复制了该函数并创建了一个修改后的my_draw_networkx_edge_labels. 这个函数在附录中。

假设您将此函数保存到名为 my_networkx.py 的文件中,您可以将边缘标签绘制为:

import my_networkx as my_nx
edge_weights = nx.get_edge_attributes(G,'w')
curved_edge_labels = {edge: edge_weights[edge] for edge in curved_edges}
straight_edge_labels = {edge: edge_weights[edge] for edge in straight_edges}
my_nx.my_draw_networkx_edge_labels(G, pos, ax=ax, edge_labels=curved_edge_labels,rotate=False,rad = arc_rad)
nx.draw_networkx_edge_labels(G, pos, ax=ax, edge_labels=straight_edge_labels,rotate=False)
fig.savefig("3.png", bbox_inches='tight',pad_inches=0)
Run Code Online (Sandbox Code Playgroud)

我们再次将曲线与直线分开。结果是这个答案中的第一个数字。

附录

NetworkX 的函数draw_networkx_edge_labels假设直线找到标签的位置:

(x, y) = (
    x1 * label_pos + x2 * (1.0 - label_pos),
    y1 * label_pos + y2 * (1.0 - label_pos),
)
Run Code Online (Sandbox Code Playgroud)

要找到二次贝塞尔曲线的中点,我们可以使用以下代码。首先我们根据matplotlib中的定义找到贝塞尔曲线的中间控制点(ctrl_1在代码中):

创建曲线时,中间控制点 (C1) 与起点 (C0) 和终点 (C2) 的距离相同,并且 C1 到连接 C0-C2 的直线的距离是 rad 乘以距离C0-C2。

由于这个定义,该函数my_draw_networkx_edge_labels需要一个名为 的额外参数rad

pos_1 = ax.transData.transform(np.array(pos[n1]))
pos_2 = ax.transData.transform(np.array(pos[n2]))
linear_mid = 0.5*pos_1 + 0.5*pos_2
d_pos = pos_2 - pos_1
rotation_matrix = np.array([(0,1), (-1,0)])
ctrl_1 = linear_mid + rad*rotation_matrix@d_pos
Run Code Online (Sandbox Code Playgroud)

以“ax.transData”开头的函数是必需的,因为轴域中的 90 度角与显示中的 90 度不对应。因此我们必须在显示坐标系之间进行坐标转换。

bezier_mid可以用贝塞尔曲线规则计算:

ctrl_mid_1 = 0.5*pos_1 + 0.5*ctrl_1
ctrl_mid_2 = 0.5*pos_2 + 0.5*ctrl_1
bezier_mid = 0.5*ctrl_mid_1 + 0.5*ctrl_mid_2
(x, y) = ax.transData.inverted().transform(bezier_mid)
Run Code Online (Sandbox Code Playgroud)

完全的my_draw_networkx_edge_labels

def my_draw_networkx_edge_labels(
    G,
    pos,
    edge_labels=None,
    label_pos=0.5,
    font_size=10,
    font_color="k",
    font_family="sans-serif",
    font_weight="normal",
    alpha=None,
    bbox=None,
    horizontalalignment="center",
    verticalalignment="center",
    ax=None,
    rotate=True,
    clip_on=True,
    rad=0
):
    """Draw edge labels.

    Parameters
    ----------
    G : graph
        A networkx graph

    pos : dictionary
        A dictionary with nodes as keys and positions as values.
        Positions should be sequences of length 2.

    edge_labels : dictionary (default={})
        Edge labels in a dictionary of labels keyed by edge two-tuple.
        Only labels for the keys in the dictionary are drawn.

    label_pos : float (default=0.5)
        Position of edge label along edge (0=head, 0.5=center, 1=tail)

    font_size : int (default=10)
        Font size for text labels

    font_color : string (default='k' black)
        Font color string

    font_weight : string (default='normal')
        Font weight

    font_family : string (default='sans-serif')
        Font family

    alpha : float or None (default=None)
        The text transparency

    bbox : Matplotlib bbox, optional
        Specify text box properties (e.g. shape, color etc.) for edge labels.
        Default is {boxstyle='round', ec=(1.0, 1.0, 1.0), fc=(1.0, 1.0, 1.0)}.

    horizontalalignment : string (default='center')
        Horizontal alignment {'center', 'right', 'left'}

    verticalalignment : string (default='center')
        Vertical alignment {'center', 'top', 'bottom', 'baseline', 'center_baseline'}

    ax : Matplotlib Axes object, optional
        Draw the graph in the specified Matplotlib axes.

    rotate : bool (deafult=True)
        Rotate edge labels to lie parallel to edges

    clip_on : bool (default=True)
        Turn on clipping of edge labels at axis boundaries

    Returns
    -------
    dict
        `dict` of labels keyed by edge

    Examples
    --------
    >>> G = nx.dodecahedral_graph()
    >>> edge_labels = nx.draw_networkx_edge_labels(G, pos=nx.spring_layout(G))

    Also see the NetworkX drawing examples at
    https://networkx.org/documentation/latest/auto_examples/index.html

    See Also
    --------
    draw
    draw_networkx
    draw_networkx_nodes
    draw_networkx_edges
    draw_networkx_labels
    """
    import matplotlib.pyplot as plt
    import numpy as np

    if ax is None:
        ax = plt.gca()
    if edge_labels is None:
        labels = {(u, v): d for u, v, d in G.edges(data=True)}
    else:
        labels = edge_labels
    text_items = {}
    for (n1, n2), label in labels.items():
        (x1, y1) = pos[n1]
        (x2, y2) = pos[n2]
        (x, y) = (
            x1 * label_pos + x2 * (1.0 - label_pos),
            y1 * label_pos + y2 * (1.0 - label_pos),
        )
        pos_1 = ax.transData.transform(np.array(pos[n1]))
        pos_2 = ax.transData.transform(np.array(pos[n2]))
        linear_mid = 0.5*pos_1 + 0.5*pos_2
        d_pos = pos_2 - pos_1
        rotation_matrix = np.array([(0,1), (-1,0)])
        ctrl_1 = linear_mid + rad*rotation_matrix@d_pos
        ctrl_mid_1 = 0.5*pos_1 + 0.5*ctrl_1
        ctrl_mid_2 = 0.5*pos_2 + 0.5*ctrl_1
        bezier_mid = 0.5*ctrl_mid_1 + 0.5*ctrl_mid_2
        (x, y) = ax.transData.inverted().transform(bezier_mid)

        if rotate:
            # in degrees
            angle = np.arctan2(y2 - y1, x2 - x1) / (2.0 * np.pi) * 360
            # make label orientation "right-side-up"
            if angle > 90:
                angle -= 180
            if angle < -90:
                angle += 180
            # transform data coordinate angle to screen coordinate angle
            xy = np.array((x, y))
            trans_angle = ax.transData.transform_angles(
                np.array((angle,)), xy.reshape((1, 2))
            )[0]
        else:
            trans_angle = 0.0
        # use default box of white with white border
        if bbox is None:
            bbox = dict(boxstyle="round", ec=(1.0, 1.0, 1.0), fc=(1.0, 1.0, 1.0))
        if not isinstance(label, str):
            label = str(label)  # this makes "1" and 1 labeled the same

        t = ax.text(
            x,
            y,
            label,
            size=font_size,
            color=font_color,
            family=font_family,
            weight=font_weight,
            alpha=alpha,
            horizontalalignment=horizontalalignment,
            verticalalignment=verticalalignment,
            rotation=trans_angle,
            transform=ax.transData,
            bbox=bbox,
            zorder=1,
            clip_on=clip_on,
        )
        text_items[(n1, n2)] = t

    ax.tick_params(
        axis="both",
        which="both",
        bottom=False,
        left=False,
        labelbottom=False,
        labelleft=False,
    )

    return text_items
Run Code Online (Sandbox Code Playgroud)


AMa*_*nto 19

对上述回复的改进是将connectionstyle添加到 nx.draw,这允许在图中看到两条平行线:

import networkx as nx
import matplotlib.pyplot as plt
G = nx.DiGraph() #or G = nx.MultiDiGraph()
G.add_node('A')
G.add_node('B')
G.add_edge('A', 'B', length = 2)
G.add_edge('B', 'A', length = 3)

pos = nx.spring_layout(G)
nx.draw(G, pos, with_labels=True, connectionstyle='arc3, rad = 0.1')
edge_labels=dict([((u,v,),d['length'])
             for u,v,d in G.edges(data=True)])

plt.show()
Run Code Online (Sandbox Code Playgroud)

看到这里的结果

  • 也许你可以查看弗朗西斯科·斯加拉梅拉(Francesco Sgaramella)在同一篇文章中的回答,他还在情节中添加了标签。 (2认同)

Fra*_*lla 11

请尝试以下方法:

import networkx as nx
import matplotlib.pyplot as plt
G = nx.DiGraph() #or G = nx.MultiDiGraph()
G.add_node('A')
G.add_node('B')
G.add_edge('A', 'B', length = 2)
G.add_edge('B', 'A', length = 3)

pos = nx.spring_layout(G)
nx.draw(G, pos)
edge_labels=dict([((u,v,),d['length'])
             for u,v,d in G.edges(data=True)])
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, label_pos=0.3, font_size=7)
plt.show()
Run Code Online (Sandbox Code Playgroud)

这将返回此图形,其中两条边和边上显示的长度:

在此输入图像描述

  • 在可视化和阅读加权图时,这可能是最大的敌人。这是丑陋的,不可读的,并且在有向图中 - 地狱知道哪条边是哪条。 (5认同)

ato*_*3ls 6

您可以使用计算出的节点位置直接使用 matplotlib。

G=nx.MultiGraph ([(1,2),(1,2),(1,2),(3,1),(3,2)])
pos = nx.random_layout(G)
nx.draw_networkx_nodes(G, pos, node_color = 'r', node_size = 100, alpha = 1)
ax = plt.gca()
for e in G.edges:
    ax.annotate("",
                xy=pos[e[0]], xycoords='data',
                xytext=pos[e[1]], textcoords='data',
                arrowprops=dict(arrowstyle="->", color="0.5",
                                shrinkA=5, shrinkB=5,
                                patchA=None, patchB=None,
                                connectionstyle="arc3,rad=rrr".replace('rrr',str(0.3*e[2])
                                ),
                                ),
                )
plt.axis('off')
plt.show()
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述