24 python numpy dataframe python-3.x pandas
我有以下数据帧
time X Y X_t0 X_tp0 X_t1 X_tp1 X_t2 X_tp2
0 0.002876 0 10 0 NaN NaN NaN NaN NaN
1 0.002986 0 10 0 NaN 0 NaN NaN NaN
2 0.037367 1 10 1 1.000000 0 NaN 0 NaN
3 0.037374 2 10 2 0.500000 1 1.000000 0 NaN
4 0.037389 3 10 3 0.333333 2 0.500000 1 1.000000
5 0.037393 4 10 4 0.250000 3 0.333333 2 0.500000
....
1030308 9.962213 256 268 256 0.000000 256 0.003906 255 0.003922
1030309 10.041799 0 268 0 -inf 256 0.000000 256 0.003906
1030310 10.118960 0 268 0 NaN 0 -inf 256 0.000000
Run Code Online (Sandbox Code Playgroud)
我尝试了以下内容
df.dropna(inplace=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.40)
X_train = X_train.drop('time', axis=1)
X_train = X_train.drop('X_t1', axis=1)
X_train = X_train.drop('X_t2', axis=1)
X_test = X_test.drop('time', axis=1)
X_test = X_test.drop('X_t1', axis=1)
X_test = X_test.drop('X_t2', axis=1)
X_test.fillna(X_test.mean(), inplace=True)
X_train.fillna(X_train.mean(), inplace=True)
y_train.fillna(y_train.mean(), inplace=True)
Run Code Online (Sandbox Code Playgroud)
但是,ValueError: Input contains NaN, infinity or a value too large for dtype('float32').
每当我尝试拟合回归模型时 ,我仍然会收到此错误fit(X_train, y_train)
我们如何同时删除NaN
和-inf
值?
piR*_*red 36
使用pd.DataFrame.isin
并检查具有任何with的行pd.DataFrame.any
.最后,使用布尔数组来切片数据帧.
df[~df.isin([np.nan, np.inf, -np.inf]).any(1)]
time X Y X_t0 X_tp0 X_t1 X_tp1 X_t2 X_tp2
4 0.037389 3 10 3 0.333333 2.0 0.500000 1.0 1.000000
5 0.037393 4 10 4 0.250000 3.0 0.333333 2.0 0.500000
1030308 9.962213 256 268 256 0.000000 256.0 0.003906 255.0 0.003922
Run Code Online (Sandbox Code Playgroud)
Ale*_*der 18
您可以替换inf
和-inf
使用NaN
,然后选择非空行.
df[df.replace([np.inf, -np.inf], np.nan).notnull().all(axis=1)] # .astype(np.float64) ?
Run Code Online (Sandbox Code Playgroud)
要么
df.replace([np.inf, -np.inf], np.nan).dropna(axis=1)
Run Code Online (Sandbox Code Playgroud)
检查列返回的类型以确保它们都符合预期(例如np.float32/64)df.info()
.
Dou*_*ugR 13
与其删除包含任何空值和无限数的行,不如将其逻辑颠倒过来更简洁,而是返回所有单元格都是有限数的行。numpy isfinite 函数执行此操作,如果行中的所有单元格都是有限的,则 '.all(1)' 只会返回 TRUE 。
df = df[np.isfinite(df).all(1)]
Run Code Online (Sandbox Code Playgroud)
小智 5
df.replace([np.inf, -np.inf], np.nan)
df.dropna(inplace=True)
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
52293 次 |
最近记录: |