k0p*_*kus 12 concurrency asynchronous scala future
我知道我可以将 aSeq[Future[T]]转换为Future[Seq[T]]via
val seqFuture = Future.sequence(seqOfFutures)
seqFuture.map((seqT: Seq[T]) => {...})
Run Code Online (Sandbox Code Playgroud)
我现在的问题是,我在这个序列中有 700 个期货,我希望能够控制其中有多少是并行解决的,因为每个期货都会调用内部休息 api,同时有 700 个请求就像是在发射针对该服务器的 dos 攻击。
我宁愿一次只解决 10 个期货。
我怎样才能做到这一点?
尝试pamu 的回答我看到错误:
[error] /home/philipp/src/bluebat/src/main/scala/com/dreamlines/metronome/service/JobFetcher.scala:32:44: com.dreamlines.commons.LazyFuture[A] does not take parameters
[error] val batch = Future.sequence(c.map(_()))
[error] ^
[error] /home/philipp/src/bluebat/src/main/scala/com/dreamlines/metronome/service/JobFetcher.scala:32:28: no type parameters for method sequence: (in: M[scala.concurrent.Future[A]])(implicit cbf: scala.collection.generic.CanBuildFrom[M[scala.concurrent.Future[A]],A,M[A]], implicit executor: scala.concurrent.ExecutionContext)scala.concurrent.Future[M[A]] exist so that it can be applied to arguments (List[Nothing])
[error] --- because ---
[error] argument expression's type is not compatible with formal parameter type;
[error] found : List[Nothing]
[error] required: ?M[scala.concurrent.Future[?A]]
[error] val batch = Future.sequence(c.map(_()))
[error] ^
[error] /home/philipp/src/bluebat/src/main/scala/com/dreamlines/metronome/service/JobFetcher.scala:32:42: type mismatch;
[error] found : List[Nothing]
[error] required: M[scala.concurrent.Future[A]]
[error] val batch = Future.sequence(c.map(_()))
[error] ^
[error] /home/philipp/src/bluebat/src/main/scala/com/dreamlines/metronome/service/JobFetcher.scala:32:36: Cannot construct a collection of type M[A] with elements of type A based on a collection of type M[scala.concurrent.Future[A]].
[error] val batch = Future.sequence(c.map(_()))
[error] ^
[error] four errors found
Run Code Online (Sandbox Code Playgroud)
SimplefoldLeft可用于控制一次同时运行的期货数量。
首先,让我们创建一个名为的案例类 LazyFuture
case class LazyFuture[+A](f: Unit => Future[A]) {
def apply() = f()
}
object LazyFuture {
def apply[A](f: => A)(implicit ec: ExecutionContext): LazyFuture[A] = LazyFuture(_ => Future(f))
def apply[A](f: => Future[A])(implicit ec: ExecutionContext): LazyFuture[A] = LazyFuture(_ => f)
}
Run Code Online (Sandbox Code Playgroud)
LazyFuture 立即停止未来运行
val list: List[LazyFuture[A]] = ...
list.grouped(concurFactor).foldLeft(Future.successful(List.empty[A])){ (r, c) =>
val batch = Future.sequence(c.map(_()))
batch.flatMap(values => r.map(rs => rs ++ values))
}
Run Code Online (Sandbox Code Playgroud)
concurFactor相应地更改以同时运行多个期货。
concurFactor 的 1 将一次运行一个未来
concurFactor of 2 将同时运行两个期货
等等 ...
def executeBatch[A](list: List[LazyFuture[A]])(concurFactor: Int) =
list.grouped(concurFactor).foldLeft(Future.successful(List.empty[A])){ (r, c) =>
val batch = Future.sequence(c.map(_()))
r.flatMap(rs => batch.map(values => rs ++ values))
}
Run Code Online (Sandbox Code Playgroud)
case class LazyFuture[+A](f: Unit => Future[A]) {
def apply() = f()
}
object LazyFuture {
def apply[A](f: => A)(implicit ec: ExecutionContext): LazyFuture[A] = LazyFuture(_ => Future(f))
def apply[A](f: => Future[A])(implicit ec: ExecutionContext): LazyFuture[A] = LazyFuture(_ => f)
}
def executeBatch[A](list: List[LazyFuture[A]])(concurFactor: Int)(implicit ec: ExecutionContext): Future[List[A]] =
list.grouped(concurFactor).foldLeft(Future.successful(List.empty[A])) { (r, c) =>
val batch = Future.sequence(c.map(_ ()))
r.flatMap(rs => batch.map(values => rs ++ values))
}
Run Code Online (Sandbox Code Playgroud)
您还可以通过限制执行池中的线程数来限制计算资源。但是,这个解决方案不是那么灵活。就个人而言,我不喜欢它。
val context: ExecutionContext =
ExecutionContext.fromExecutor(Executors.newFixedThreadPool(8))
Run Code Online (Sandbox Code Playgroud)
您必须记住传递正确的执行上下文,这是一个隐式值。有时我们不知道哪个隐式在范围内。这是马车
当未来被构造如下
val foo = Future {
1 + 2
} // future starts executing
LazyFuture(foo) // Not a right way
Run Code Online (Sandbox Code Playgroud)
foo 已经开始执行,无法控制。
正确的构造方法 LazyFuture
val foo = LazyFuture {
1 + 2
}
Run Code Online (Sandbox Code Playgroud)
或者
val foo = LazyFuture {
Future {
1 + 2
}
}
Run Code Online (Sandbox Code Playgroud)
package main
import scala.concurrent.{Await, ExecutionContext, Future}
import scala.concurrent.duration.Duration
object Main {
case class LazyFuture[A](f: Unit => Future[A]) {
def apply(): Future[A] = f()
}
object LazyFuture {
def apply[A](f: => A)(implicit ec: ExecutionContext): LazyFuture[A] = LazyFuture(_ => Future(f))
def apply[A](f: => Future[A]): LazyFuture[A] = LazyFuture(_ => f)
}
def executeBatch[A](list: List[LazyFuture[A]])(concurFactor: Int)
(implicit ec: ExecutionContext): Future[List[A]] =
list.grouped(concurFactor).foldLeft(Future.successful(List.empty[A])) { (r, c) =>
val batch = Future.sequence(c.map(_ ()))
r.flatMap(rs => r.map(values=> rs ++ values))
}
def main(args: Array[String]): Unit = {
import scala.concurrent.ExecutionContext.Implicits.global
val futures: Seq[LazyFuture[Int]] = List(1, 2, 3, 4, 5).map { value =>
LazyFuture {
println(s"value: $value started")
Thread.sleep(value * 200)
println(s"value: $value stopped")
value
}
}
val f = executeBatch(futures.toList)(2)
Await.result(f, Duration.Inf)
}
}
Run Code Online (Sandbox Code Playgroud)