Pearson相关和nan值

Amy*_*Amy 8 python arrays numpy nan pearson-correlation

我有两个包含数百列的CSV_files,我想为两个CSV_files的每个相同列计算Pearson相关系数和p值.问题是当一列中缺少数据"NaN"时,它会给我一个错误.当".dropna"从列中删除nan值时,有时X和Y的形状不相等(基于移除的nan值)并且我收到此错误:

"ValueError:操作数无法与形状一起广播(1020,)(1016,)"

问题:如果在"nan"中的一个csv中的第8行,是否有任何方法可以从其他csv中删除相同的行,并根据具有两个csv文件值的行对每个列进行分析?

import pandas as pd
import scipy
import csv
import numpy as np
from scipy import stats


df = pd.read_csv ("D:/Insitu-Daily.csv",header = None)
dg = pd.read_csv ("D:/Model-Daily.csv",header = None)

pearson_corr_set = []
pearson_p_set = []


for i in range(1,df.shape[1]):
    X= df[i].dropna(axis=0, how='any')
    Y= dg[i].dropna(axis=0, how='any')

    [pearson_corr, pearson_p] = scipy.stats.stats.pearsonr(X, Y)
    pearson_corr_set = np.append(pearson_corr_set,pearson_corr)
    pearson_p_set = np.append(pearson_p_set,pearson_p)

with open('D:/Results.csv','wb') as file:
    str1 = ",".join(str(i) for i in np.asarray(pearson_corr_set))
    file.write(str1)
    file.write('\n')    
    str1 = ",".join(str(i) for i in np.asarray(pearson_p_set))
    file.write(str1)
    file.write('\n') 
Run Code Online (Sandbox Code Playgroud)

jpp*_*jpp 8

这是一个解决方案.首先计算2个numpy数组的"坏"指数.然后掩盖忽略那些坏指数.

x = np.array([5, 1, 6, 9, 10, np.nan, 1, 1, np.nan])
y = np.array([4, 4, 5, np.nan, 6, 2, 1, 8, 1])

bad = ~np.logical_or(np.isnan(x), np.isnan(y))

np.compress(bad, x)  # array([  5.,   1.,   6.,  10.,   1.,   1.])
np.compress(bad, y)  # array([ 4.,  4.,  5.,  6.,  1.,  8.])
Run Code Online (Sandbox Code Playgroud)