Joa*_*ner 7 recursion termination coq isabelle
我想使用Program Fixpoint或Function在Coq中定义以下函数:
Require Import Coq.Lists.List.
Import ListNotations.
Require Import Coq.Program.Wf.
Require Import Recdef.
Inductive Tree := Node : nat -> list Tree -> Tree.
Fixpoint height (t : Tree) : nat :=
match t with
| Node x ts => S (fold_right Nat.max 0 (map height ts))
end.
Program Fixpoint mapTree (f : nat -> nat) (t : Tree) {measure (height t)} : Tree :=
match t with
Node x ts => Node (f x) (map (fun t => mapTree f t) ts)
end.
Next Obligation.
Run Code Online (Sandbox Code Playgroud)
不幸的是,在这一点上,我有一个证明义务height t < height (Node x ts)而不知道它t是一个成员ts.
同样与Function代替Program Fixpoint,只有Function检测出问题并中止定义:
Run Code Online (Sandbox Code Playgroud)Error: the term fun t : Tree => mapTree f t can not contain a recursive call to mapTree
我希望获得证明义务In t ts ? height t < height (Node x ts).
有没有办法解决不涉及重组函数定义的问题?(我知道要解决map这里定义的解决办法,例如 - 我想避免这些.)
为了证明这种期望,让我展示当我在Isabelle中使用function与Coq Function命令相关的命令(AFAIK)时也会发生的事情:
theory Tree imports Main begin
datatype Tree = Node nat "Tree list"
fun height where
"height (Node _ ts) = Suc (foldr max (map height ts) 0)"
function mapTree where
"mapTree f (Node x ts) = Node (f x) (map (? t. mapTree f t) ts)"
by pat_completeness auto
termination
proof (relation "measure (?(f,t). height t)")
show "wf (measure (?(f, t). height t))" by auto
next
fix f :: "nat ? nat" and x :: nat and ts :: "Tree list" and t
assume "t ? set ts"
thus "((f, t), (f, Node x ts)) ? measure (?(f, t). height t)"
by (induction ts) auto
qed
Run Code Online (Sandbox Code Playgroud)
在终止证据中,我得到了假设t ? set ts.
请注意,Isabelle在此不需要手动终止证明,以下定义也可以正常使用:
fun mapTree where
"mapTree f (Node x ts) = Node (f x) (map (? t. mapTree f t) ts)"
Run Code Online (Sandbox Code Playgroud)
这是有效的,因为该map函数具有形式的"同余引理"
xs = ys ? (?x. x ? set ys ? f x = g x) ? map f xs = map g ys
Run Code Online (Sandbox Code Playgroud)
该function命令用于查明终止证明只需要考虑t ? set ts..
如果没有这样的引理,例如因为我定义了
definition "map' = map"
Run Code Online (Sandbox Code Playgroud)
并且使用它mapTree,我得到与Coq相同的无法证明的证明义务.我可以通过声明同余引理map'(例如使用)来使其再次起作用
declare map_cong[folded map'_def,fundef_cong]
Run Code Online (Sandbox Code Playgroud)
在这种情况下,您实际上并不需要完全通用的有根据的递归:
Require Import Coq.Lists.List.
Set Implicit Arguments.
Inductive tree := Node : nat -> list tree -> tree.
Fixpoint map_tree (f : nat -> nat) (t : tree) : tree :=
match t with
| Node x ts => Node (f x) (map (fun t => map_tree f t) ts)
end.
Run Code Online (Sandbox Code Playgroud)
Coq能够自己弄清楚map_tree在严格的子项上执行递归调用.但是,证明这个函数的任何内容都很困难,因为生成的归纳原理tree没有用处:
tree_ind :
forall P : tree -> Prop,
(forall (n : nat) (l : list tree), P (Node n l)) ->
forall t : tree, P t
Run Code Online (Sandbox Code Playgroud)
这基本上与您之前描述的问题相同.幸运的是,我们可以通过证明我们自己的归纳原则来证明这个问题.
Require Import Coq.Lists.List.
Import ListNotations.
Unset Elimination Schemes.
Inductive tree := Node : nat -> list tree -> tree.
Set Elimination Schemes.
Fixpoint tree_ind
(P : tree -> Prop)
(IH : forall (n : nat) (ts : list tree),
fold_right (fun t => and (P t)) True ts ->
P (Node n ts))
(t : tree) : P t :=
match t with
| Node n ts =>
let fix loop ts :=
match ts return fold_right (fun t' => and (P t')) True ts with
| [] => I
| t' :: ts' => conj (tree_ind P IH t') (loop ts')
end in
IH n ts (loop ts)
end.
Fixpoint map_tree (f : nat -> nat) (t : tree) : tree :=
match t with
| Node x ts => Node (f x) (map (fun t => map_tree f t) ts)
end.
Run Code Online (Sandbox Code Playgroud)
该Unset Elimination Schemes命令阻止Coq生成其默认(并且没有用)的归纳原理tree.发生fold_right在归纳假设只是表示谓词P所有树上的果子持有t'出现ts.
以下是您可以使用此归纳原理证明的声明:
Lemma map_tree_comp f g t :
map_tree f (map_tree g t) = map_tree (fun n => f (g n)) t.
Proof.
induction t as [n ts IH]; simpl; f_equal.
induction ts as [|t' ts' IHts]; try easy.
simpl in *.
destruct IH as [IHt' IHts'].
specialize (IHts IHts').
now rewrite IHt', <- IHts.
Qed.
Run Code Online (Sandbox Code Playgroud)
一般来说,建议避免此问题。但如果真想获得Isabelle给你的举证义务,这里有一个方法:
\n\n在伊莎贝尔中,我们可以给出一个外部引理来统计map仅将其参数应用于给定列表的成员。在 Coq 中,我们不能在外部引理中做到这一点,但我们可以在类型中做到这一点。所以而不是普通类型的地图
forall A B, (A -> B) -> list A -> list B\nRun Code Online (Sandbox Code Playgroud)\n\n我们希望类型为 \xe2\x80\x9cf只应用于列表的元素:
forall A B (xs : list A), (forall x : A, In x xs -> B) -> list B\nRun Code Online (Sandbox Code Playgroud)\n\n(它需要重新排序参数,以便类型f可以提及xs)。
编写这个函数并不简单,我发现使用证明脚本更容易:
\n\nDefinition map {A B} (xs : list A) (f : forall (x:A), In x xs -> B) : list B.\nProof.\n induction xs.\n * exact [].\n * refine (f a _ :: IHxs _).\n - left. reflexivity.\n - intros. eapply f. right. eassumption.\nDefined.\nRun Code Online (Sandbox Code Playgroud)\n\n但你也可以手写\xe2\x80\x9c\xe2\x80\x9d:
\n\nFixpoint map {A B} (xs : list A) : forall (f : forall (x:A), In x xs -> B), list B :=\n match xs with\n | [] => fun _ => []\n | x :: xs => fun f => f x (or_introl eq_refl) :: map xs (fun y h => f y (or_intror h))\n end.\nRun Code Online (Sandbox Code Playgroud)\n\n无论哪种情况,结果都很好:我可以在 中使用这个函数mapTree,即
Program Fixpoint mapTree (f : nat -> nat) (t : Tree) {measure (height t)} : Tree :=\n match t with \n Node x ts => Node (f x) (map ts (fun t _ => mapTree f t))\n end.\nNext Obligation.\nRun Code Online (Sandbox Code Playgroud)\n\n我不需要对 的新参数做任何事情f,但它会根据需要显示在终止证明义务中In t ts \xe2\x86\x92 height t < height (Node x ts)。所以我可以证明并定义mapTree:
simpl.\n apply Lt.le_lt_n_Sm.\n induction ts; inversion_clear H.\n - subst. apply PeanoNat.Nat.le_max_l.\n - rewrite IHts by assumption.\n apply PeanoNat.Nat.le_max_r.\nQed.\nRun Code Online (Sandbox Code Playgroud)\n\n不幸的是,它仅适用于Program Fixpoint,不适用于Function。