为什么使用std :: mutex的函数会对pthread_key_create的地址进行空检查?

Bee*_*ope 8 c++ gcc pthreads clang stdmutex

采用这个简单的函数,在由std::mutex以下实现的锁定下递增整数:

#include <mutex>

std::mutex m;

void inc(int& i) {
    std::unique_lock<std::mutex> lock(m);
    i++;
}
Run Code Online (Sandbox Code Playgroud)

我希望这(在内联之后)以直接的方式编译,然后调用m.lock()增量.im.unlock()

检查生成的程序集的最新版本的gccclang,但是,我们看到一个额外的并发症.gcc首先考虑版本:

inc(int&):
  mov eax, OFFSET FLAT:__gthrw___pthread_key_create(unsigned int*, void (*)(void*))
  test rax, rax
  je .L2
  push rbx
  mov rbx, rdi
  mov edi, OFFSET FLAT:m
  call __gthrw_pthread_mutex_lock(pthread_mutex_t*)
  test eax, eax
  jne .L10
  add DWORD PTR [rbx], 1
  mov edi, OFFSET FLAT:m
  pop rbx
  jmp __gthrw_pthread_mutex_unlock(pthread_mutex_t*)
.L2:
  add DWORD PTR [rdi], 1
  ret
.L10:
  mov edi, eax
  call std::__throw_system_error(int)
Run Code Online (Sandbox Code Playgroud)

这是有趣的前几行.汇编代码检查地址__gthrw___pthread_key_create(这是pthread_key_create一个创建线程本地存储密钥的函数的实现),如果它为零,它将分支到.L2一个指令中实现增量而没有任何锁定.

如果它不为零,则按预期进行:锁定互斥锁,执行增量操作和解锁.

clang甚至更多:它检查函数的地址两次,一次在之前lock和之前一次unlock:

inc(int&): # @inc(int&)
  push rbx
  mov rbx, rdi
  mov eax, __pthread_key_create
  test rax, rax
  je .LBB0_4
  mov edi, m
  call pthread_mutex_lock
  test eax, eax
  jne .LBB0_6
  inc dword ptr [rbx]
  mov eax, __pthread_key_create
  test rax, rax
  je .LBB0_5
  mov edi, m
  pop rbx
  jmp pthread_mutex_unlock # TAILCALL
.LBB0_4:
  inc dword ptr [rbx]
.LBB0_5:
  pop rbx
  ret
.LBB0_6:
  mov edi, eax
  call std::__throw_system_error(int)
Run Code Online (Sandbox Code Playgroud)

这项检查的目的是什么?

也许是为了支持这样一种情况:目标文件最终被编译成没有pthreads支持的二进制文件,然后在没有锁定的情况下回退到一个版本?我找不到有关此行为的任何文档.

Mic*_*urr 7

你的猜测看起来是正确的。从libgcc/gthr-posix.hgcc 的源存储库 ( https://github.com/gcc-mirror/gcc.git ) 中的文件:

/* For a program to be multi-threaded the only thing that it certainly must
   be using is pthread_create.  However, there may be other libraries that
   intercept pthread_create with their own definitions to wrap pthreads
   functionality for some purpose.  In those cases, pthread_create being
   defined might not necessarily mean that libpthread is actually linked
   in.

   For the GNU C library, we can use a known internal name.  This is always
   available in the ABI, but no other library would define it.  That is
   ideal, since any public pthread function might be intercepted just as
   pthread_create might be.  __pthread_key_create is an "internal"
   implementation symbol, but it is part of the public exported ABI.  Also,
   it's among the symbols that the static libpthread.a always links in
   whenever pthread_create is used, so there is no danger of a false
   negative result in any statically-linked, multi-threaded program.

   For others, we choose pthread_cancel as a function that seems unlikely
   to be redefined by an interceptor library.  The bionic (Android) C
   library does not provide pthread_cancel, so we do use pthread_create
   there (and interceptor libraries lose).  */

#ifdef __GLIBC__
__gthrw2(__gthrw_(__pthread_key_create),
     __pthread_key_create,
     pthread_key_create)
# define GTHR_ACTIVE_PROXY  __gthrw_(__pthread_key_create)
#elif defined (__BIONIC__)
# define GTHR_ACTIVE_PROXY  __gthrw_(pthread_create)
#else
# define GTHR_ACTIVE_PROXY  __gthrw_(pthread_cancel)
#endif

static inline int
__gthread_active_p (void)
{
  static void *const __gthread_active_ptr
    = __extension__ (void *) &GTHR_ACTIVE_PROXY;
  return __gthread_active_ptr != 0;
}
Run Code Online (Sandbox Code Playgroud)

然后在文件的其余部分,许多 pthread API 被包装在对__gthread_active_p()函数的检查中。如果__gthread_active_p()返回 0 什么都不做,返回成功。

  • 我不太熟悉 GCC 内部结构,但看起来这不是在 glibc/pthreads 中实现的,而是在 [gcclib](https://gcc.gnu.org/onlinedocs/gccint/Libgcc.html) 中实现的,这是一个编译器使用的“低级运行时库”。看起来 libgcc 可能依赖于正在使用的 libc,这是我没想到的。但可能我只是不完全明白发生了什么。 (2认同)