Mat*_*ias 11 python neural-network tensorflow
我有两个归一化张量,我需要计算这些张量之间的余弦相似度.如何使用TensorFlow进行操作?
cosine(normalize_a,normalize_b)
a = tf.placeholder(tf.float32, shape=[None], name="input_placeholder_a")
b = tf.placeholder(tf.float32, shape=[None], name="input_placeholder_b")
normalize_a = tf.nn.l2_normalize(a,0)
normalize_b = tf.nn.l2_normalize(b,0)
Run Code Online (Sandbox Code Playgroud)
Raj*_*tra 23
时代在变.使用最新的TF API,可以通过调用来计算tf.losses.cosine_distance
.
例:
import tensorflow as tf
import numpy as np
x = tf.constant(np.random.uniform(-1, 1, 10))
y = tf.constant(np.random.uniform(-1, 1, 10))
s = tf.losses.cosine_distance(tf.nn.l2_normalize(x, 0), tf.nn.l2_normalize(y, 0), dim=0)
print(tf.Session().run(s))
Run Code Online (Sandbox Code Playgroud)
当然,1 - s
余弦相似!
Mir*_*ber 21
这将完成工作:
a = tf.placeholder(tf.float32, shape=[None], name="input_placeholder_a")
b = tf.placeholder(tf.float32, shape=[None], name="input_placeholder_b")
normalize_a = tf.nn.l2_normalize(a,0)
normalize_b = tf.nn.l2_normalize(b,0)
cos_similarity=tf.reduce_sum(tf.multiply(normalize_a,normalize_b))
sess=tf.Session()
cos_sim=sess.run(cos_similarity,feed_dict={a:[1,2,3],b:[2,4,6]})
Run Code Online (Sandbox Code Playgroud)
这打印 0.99999988
归档时间: |
|
查看次数: |
20645 次 |
最近记录: |