为什么我在rubridate日期的功能如此之慢?

leb*_*noz 8 r date lubridate

我写了这个我一直用的功能:

# Give the previous day, or Friday if the previous day is Saturday or Sunday.
previous_business_date_if_weekend = function(my_date) {
    if (length(my_date) == 1) {
        if (weekdays(my_date) == "Sunday") { my_date = lubridate::as_date(my_date) - 2 }
        if (weekdays(my_date) == "Saturday") { my_date = lubridate::as_date(my_date) - 1 }
        return(lubridate::as_date(my_date))
    } else if (length(my_date) > 1) {
        my_date = lubridate::as_date(sapply(my_date, previous_business_date_if_weekend))
        return(my_date)
    }
}
Run Code Online (Sandbox Code Playgroud)

当我将其应用于具有数千行的数据帧的日期列时出现问题.这太慢了. 有什么想法为什么?

Uwe*_*Uwe 10

OP的问题为什么我的函数在rubridate日期这么慢?Lubridate这样的一些概括性陈述在我的经验中有点慢,这表明特定的包可能是导致性能低下的原因.

我想用一些基准来验证这一点.

使用双冒号运算符的惩罚 ::

Frank在他的评论提到使用双冒号运算符::来访问命名空间中的导出变量或函数会受到惩罚.

# creating data
n <- 10^1L
fmt <- "%F"
chr_dates <- format(Sys.Date() + seq_len(n), "%F")

# loading lubridate into namespace
library(lubridate) 
microbenchmark::microbenchmark(
  base1 = r1 <- as.Date(chr_dates),
  base2 = r2 <- base::as.Date(chr_dates),
  lubr1 = r3 <- as_date(chr_dates),
  lubr2 = r4 <- lubridate::as_date(chr_dates),
  times = 100L
)
Run Code Online (Sandbox Code Playgroud)
Unit: microseconds
  expr     min       lq      mean  median       uq     max neval cld
 base1  87.977  89.1100  92.03587  89.865  90.9980 128.756   100 a  
 base2  94.018  95.7175 100.64848  97.039  99.3045 179.351   100  b 
 lubr1  92.508  94.2070  98.21307  95.151  97.7940 175.954   100  b 
 lubr2 101.569 103.0800 109.98974 104.024 107.9885 258.643   100   c
Run Code Online (Sandbox Code Playgroud)

使用双冒号运算符的代价::是大约10微秒.

这只有在重复调用函数时才会起作用(就像OP代码中使用的那样sapply()).恕我直言,调试命名空间冲突或维护函数来源不明确的代码的痛苦要高得多.当然,您的里程可能会有所不同.

时间可以验证n = 100,

Unit: microseconds
  expr     min       lq     mean   median       uq      max neval cld
 base1 556.933 561.0855 580.3382 562.9730 590.7250  812.176   100   a
 base2 564.483 568.2600 588.5695 570.9030 596.2010  989.262   100   a
 lubr1 562.596 565.9935 587.4443 568.4480 594.8790 1039.480   100   a
 lubr2 572.036 575.9995 597.1557 578.4545 601.1085 1230.159   100   a
Run Code Online (Sandbox Code Playgroud)

将字符日期转换为类Date

有许多包处理将不同格式的字符日期转换为类DatePOSIXct.其中一些旨在表现,另一些则是为了方便.

这里base,lubridate,anytime,fasttime,和data.table(因为它是在一个答案提及)进行比较.

输入是标准明确格式的字符日期YYYY-MM-DD.时区被忽略.

fasttime 仅接受1970年至2199年之间的日期,因此必须修改样本数据的创建,以便创建100 K日期的样本数据集.

n <- 10^5L
fmt <- "%F"
set.seed(123L)
chr_dates <- format(
  sample(
    seq(as.Date("1970-01-01"), as.Date("2199-12-31"), by = 1L), 
    n, replace = TRUE),
  "%F")
Run Code Online (Sandbox Code Playgroud)

因为弗兰克怀疑猜测格式会增加惩罚,所以在可能的情况下,使用和不使用给定格式调用函数.使用双冒号运算符调用所有函数::.

microbenchmark::microbenchmark(
  base_ = r1 <- base::as.Date(chr_dates),
  basef = r1 <- base::as.Date(chr_dates, fmt),
  lub1_ = r2 <- lubridate::as_date(chr_dates),
  lub1f = r2 <- lubridate::as_date(chr_dates, fmt),
  lub2_ = r3 <- lubridate::ymd(chr_dates),
  anyt_ = r4 <- anytime::anydate(chr_dates),
  idat_ = r5 <- data.table::as.IDate(chr_dates),
  idatf = r5 <- data.table::as.IDate(chr_dates, fmt),
  fast_ = r6 <- fasttime::fastPOSIXct(chr_dates),
  fastd = r6 <- as.Date(fasttime::fastPOSIXct(chr_dates)),
  times = 5L
)
# check results
all.equal(r1, r2)
all.equal(r1, r3)
all.equal(r1, c(r4)) # remove tzone attribute
all.equal(r1, as.Date(r5)) # convert IDate to Date
all.equal(r1, as.Date(r6)) # convert POSIXct to Date
Run Code Online (Sandbox Code Playgroud)
Unit: milliseconds
  expr        min         lq       mean     median         uq        max neval  cld
 base_ 641.799082 645.008517 648.128466 648.791875 649.149444 655.893411     5    d
 basef  69.377419  69.937371  73.888828  71.403139  76.022083  82.704127     5  b  
 lub1_ 644.199361 645.217696 680.542327 649.855896 652.887492 810.551189     5    d
 lub1f  69.769726  69.947943  70.944605  70.795234  71.365759  72.844364     5  b  
 lub2_  18.672495  27.025711  26.990218  28.180730  29.944409  31.127747     5 ab  
 anyt_ 381.870316 384.513758 386.211134 384.992152 385.159043 394.520400     5   c 
 idat_ 643.386808 644.312259 649.385356 648.204359 651.666396 659.356958     5    d
 idatf  69.844109  71.188673  75.319481  77.142365  78.156923  80.265334     5  b  
 fast_   4.994637   5.363533   5.748137   5.601031   5.760370   7.021112     5 a   
 fastd   5.230625   6.296157   6.686500   6.345998   6.538941   9.020780     5 a
Run Code Online (Sandbox Code Playgroud)

时间表明

  • 弗兰克的怀疑是正确的.猜测格式是昂贵的.将格式作为参数传递给as.Date(),as_date()as.IDate()比没有调用快十倍.
  • fasttime::fastPOSIXct()确实是最快的.即使有额外的转换POSIXct,以Date它比第二快的快四倍lubridate::ymd().


the*_*ail 9

你循环每一行.它很慢并不奇怪.你可以基本上做一个替换操作,而不是从每个日期获取一个固定的差异:0表示MF,-1表示Sat,-2表示Sun.

# 'big' sample data
x <- Sys.Date() + 0:100000

bizdays <- function(x) x - match(weekdays(x), c("Saturday","Sunday"), nomatch=0)

# since `weekdays()` is locale-specific, you could also be defensive and do:
bizdays <- function(x) x - match(format(x, "%w"), c("6","0"), nomatch=0)

system.time(bizdays(x))
#   user  system elapsed 
#   0.36    0.00    0.35 

system.time(previous_business_date_if_weekend(x))
#   user  system elapsed 
#  45.45    0.00   45.57 

identical(bizdays(x), previous_business_date_if_weekend(x))
#[1] TRUE
Run Code Online (Sandbox Code Playgroud)

  • @Frank - 我怀疑它,考虑到他们做了'平日(my_date)`而没有任何转换 (2认同)

Mat*_*att 5

Lubridate在我的经历中有点慢.我建议使用data.table和iDate.

这样的东西应该非常强大:

library(data.table)

#Make data.table of dates in string format
x = data.table(date = format(Sys.Date() + 0:100000,format='%d/%m/%Y'))

#Convert to IDate (by reference)
set(x, j = "date", value = as.IDate(strptime(x[,date], "%d/%m/%Y")))

#Day zero was a Thursday
originDate = as.IDate(strptime("01/01/1970", "%d/%m/%Y"))
as.integer(originDate)
#[1] 0
weekdays(originDate)
#[1] "Thursday"

previous_business_date_if_weekend_dt = function(x) {

  #Adjust dates so that Sat is 1, Sun is 2, and subtract by reference
  x[,adjustedDate := date]
  x[(as.integer(x[,date]-2) %% 7 + 1)<=2, adjustedDate := adjustedDate - (as.integer(date-2) %% 7 + 1)]

}

bizdays <- function(x) x - match(weekdays(x), c("Saturday","Sunday"), nomatch=0)

system.time(bizdays(y))
# user  system elapsed 
# 0.22    0.00    0.22 

system.time(previous_business_date_if_weekend_dt(x))
# user  system elapsed 
# 0       0       0 
Run Code Online (Sandbox Code Playgroud)

另请注意,在此解决方案中花费最多时间的部分可能是从字符串中提取日期,如果您担心这一点,可以将它们重新格式化为整数格式.