圆/矩形碰撞响应

Ali*_*nar 2 javascript math game-physics

所以我前段时间建了一个Breakout克隆,我想稍微升级它,主要是为了碰撞.当我第一次做到这一点时,我的球和我的砖之间有一个基本的" 碰撞 "检测,实际上将球视为另一个矩形.但是这会产生边缘碰撞的问题,所以我想我会改变它.问题是,我找到了我的问题的一些答案:例如这个图像 ball_deflection.jpeg和这个线程的最后一个评论:圆/ 碰撞反应,但我找不到如何计算最终的速度矢量.

到目前为止,我有:

- 找到矩形上最近的点,
- 创建法线和切线向量,

现在我需要的是以某种方式"将速度矢量划分为法线分量和切线分量;否定法线分量并添加法线和切线分量以获得新的速度矢量"如果这看起来非常简单,我很抱歉我无法理解......代码:

function collision(rect, circle){
  var NearestX = Max(rect.x, Min(circle.pos.x, rect.x + rect.w));
  var NearestY = Max(rect.y, Min(circle.pos.y, rect.y + rect.w));

  var dist = createVector(circle.pos.x - NearestX, circle.pos.y - NearestY);
  var dnormal = createVector(- dist.y, dist.x);
//change current circle vel according to the collision response
}
Run Code Online (Sandbox Code Playgroud)

谢谢 !

编辑:也找到了这个,但我不知道它是否适用于矩形的所有点或只有角落.

cdo*_*256 5

最好用几个图说明:

角

有入射角=反射角.将此值称为θ.

angles2

θ=法线角度 - 入射角度.

atan2是用于计算来自正x轴的矢量角度的函数.

然后紧接着是下面的代码:

function collision(rect, circle){
  var NearestX = Max(rect.x, Min(circle.pos.x, rect.x + rect.w));
  var NearestY = Max(rect.y, Min(circle.pos.y, rect.y + rect.h));

  var dist = createVector(circle.pos.x - NearestX, circle.pos.y - NearestY);
  var dnormal = createVector(- dist.y, dist.x);

  var normal_angle = atan2(dnormal.y, dnormal.x);
  var incoming_angle = atan2(circle.vel.y, circle.vel.x);
  var theta = normal_angle - incoming_angle;
  circle.vel = circle.vel.rotate(2*theta);
}
Run Code Online (Sandbox Code Playgroud)

另一种方法是沿着切线获得速度,然后从圆周速度中减去该值的两倍.

angles3

然后代码变成了

function collision(rect, circle){
  var NearestX = Max(rect.x, Min(circle.pos.x, rect.x + rect.w));
  var NearestY = Max(rect.y, Min(circle.pos.y, rect.y + rect.h));

  var dist = createVector(circle.pos.x - NearestX, circle.pos.y - NearestY);
  var tangent_vel = dist.normalize().dot(circle.vel);
  circle.vel = circle.vel.sub(tangent_vel.mult(2));
}
Run Code Online (Sandbox Code Playgroud)

上面的两个代码片段几乎在同一时间(可能)基本上完成相同的事情.只需选择您最了解的一个.

另外,正如@arbuthnott指出的那样,NearestY应该使用复制粘贴错误rect.h而不是rect.w.

编辑:我忘记了位置分辨率.这是将两个物理对象分开移动以使它们不再相交的过程.在这种情况下,由于块是静态的,我们只需要移动球.

渗透图

function collision(rect, circle){
  var NearestX = Max(rect.x, Min(circle.pos.x, rect.x + rect.w));
  var NearestY = Max(rect.y, Min(circle.pos.y, rect.y + rect.h));    
  var dist = createVector(circle.pos.x - NearestX, circle.pos.y - NearestY);

  if (circle.vel.dot(dist) < 0) { //if circle is moving toward the rect
    //update circle.vel using one of the above methods
  }

  var penetrationDepth = circle.r - dist.mag();
  var penetrationVector = dist.normalise().mult(penetrationDepth);
  circle.pos = circle.pos.sub(penetrationVector);
}
Run Code Online (Sandbox Code Playgroud)


Bli*_*n67 5

球棒与球的碰撞

处理球和矩形碰撞的最佳方法是利用系统的对称性。

球作为一个点。

首先是球,它的半径r定义了所有点距r中心的距离。但我们可以将球变成一个点,并将半径添加到矩形上。球现在只是随时间移动的一个点,即一条线。

矩形的所有边都按半径增长。该图显示了其工作原理。

在此输入图像描述

绿色矩形是原始矩形。球 A、B 不接触矩形,而球 C、D 接触。球 A、D 代表一种特殊情况,但如您所见,很容易解决。

所有运动都呈一条线。

所以现在我们有一个更大的矩形和一个球作为随着时间移动的点(一条线),但是矩形也在移动,这意味着随着时间的推移,边缘将扫除对我的大脑来说太复杂的区域,所以我们再次可以使用对称性,这次是相对运动。

从球棒的角度来看,当球移动时,它是静止的;从球来看,当球棒移动时,它是静止的。他们都看到对方朝相反的方向移动。

由于球现在是一个点,对其运动进行更改只会改变其行进的路线。所以我们现在可以将球棒固定在空间中并从球中减去它的运动。由于球棒现已固定,我们可以将其中心点移动到原点 (0,0) 并向相反方向移动球。

此时我们做出一个重要的假设。球和球棒始终处于不接触的状态,当我们移动球和/或球棒时,它们可能会接触。如果它们确实发生接触,我们会计算一个新的轨迹,这样它们就不会接触。

两种可能的碰撞

现在有两种可能的碰撞情况,一种是球击中球棒的侧面,另一种是球击中球棒的角部。

下图显示了球棒在原点的位置以及球相对于球棒的运动和位置。它沿着红线从A到B然后弹回C

球击中边缘

在此输入图像描述

球击中角球

在此输入图像描述

由于这里也存在对称性,因此击中哪一侧或哪个角没有任何区别。事实上,我们可以根据球距球棒中心的球的大小来反映整个问题。因此,如果球位于球棒的左侧,则在 x 方向上镜像其位置和运动,在 y 方向上镜像相同(您必须通过信号量跟踪该镜像,以便在找到解决方案后可以反转它)。

代码

该示例执行上面函数中描述的操作。doBatBall(bat, ball)球具有一定的重力,会从画布的侧面弹起。蝙蝠通过鼠标移动。球棒的运动将转移到球上,但球棒不会感受到来自球的任何力量。

const ctx = canvas.getContext("2d");
const mouse  = {x : 0, y : 0, button : false}
function mouseEvents(e){
	mouse.x = e.pageX;
	mouse.y = e.pageY;
	mouse.button = e.type === "mousedown" ? true : e.type === "mouseup" ? false : mouse.button;
}
["down","up","move"].forEach(name => document.addEventListener("mouse" + name, mouseEvents));
								
// short cut vars 
var w = canvas.width;
var h = canvas.height;
var cw = w / 2;  // center 
var ch = h / 2;
const gravity = 1;


// constants and helpers
const PI2 = Math.PI * 2;
const setStyle = (ctx,style) => { Object.keys(style).forEach(key=> ctx[key] = style[key] ) };

// the ball
const ball = {
    r : 50,
    x : 50,
    y : 50,
    dx : 0.2,
    dy : 0.2,
    maxSpeed : 8,
    style : {
        lineWidth : 12,
        strokeStyle : "green",
    },
    draw(ctx){
        setStyle(ctx,this.style);
        ctx.beginPath();
        ctx.arc(this.x,this.y,this.r-this.style.lineWidth * 0.45,0,PI2);
        ctx.stroke();
    },
    update(){
        this.dy += gravity;
        var speed = Math.sqrt(this.dx * this.dx + this.dy * this.dy);
        var x = this.x + this.dx;
        var y = this.y + this.dy;
        
        if(y > canvas.height - this.r){
             y = (canvas.height - this.r) - (y - (canvas.height - this.r));
             this.dy = -this.dy;
        }
        if(y < this.r){
             y = this.r - (y - this.r);
             this.dy = -this.dy;
        }
        if(x > canvas.width - this.r){
             x = (canvas.width - this.r) - (x - (canvas.width - this.r));
             this.dx = -this.dx;
        }
        if(x < this.r){
             x = this.r - (x - this.r);
             this.dx = -this.dx;
        }
        
        this.x = x;
        this.y = y;
        if(speed > this.maxSpeed){  // if over speed then slow the ball down gradualy
            var reduceSpeed = this.maxSpeed + (speed-this.maxSpeed) * 0.9; // reduce speed if over max speed
            this.dx = (this.dx / speed) * reduceSpeed;
            this.dy = (this.dy / speed) * reduceSpeed;
        }
        
        
    }
}
const ballShadow = { // this is used to do calcs that may be dumped
    r : 50,
    x : 50,
    y : 50,
    dx : 0.2,
    dy : 0.2,
}
// Creates the bat
const bat = {
    x : 100,
    y : 250,
    dx : 0,
    dy : 0,
    width : 140,
    height : 10,
    style : {
        lineWidth : 2,
        strokeStyle : "black",
    },
    draw(ctx){
        setStyle(ctx,this.style);
        ctx.strokeRect(this.x - this.width / 2,this.y - this.height / 2, this.width, this.height);
    },
    update(){
        this.dx = mouse.x - this.x;
        this.dy = mouse.y - this.y;        
        var x = this.x + this.dx;
        var y = this.y + this.dy;
        x < this.width / 2  && (x = this.width / 2);
        y < this.height / 2  && (y = this.height / 2);
        x > canvas.width - this.width / 2  && (x = canvas.width  - this.width / 2);
        y > canvas.height - this.height / 2  && (y = canvas.height - this.height / 2);        
        this.dx = x - this.x;
        this.dy = y - this.y;
        this.x = x;
        this.y = y;
        
    }
}

//=============================================================================
// THE FUNCTION THAT DOES THE BALL BAT sim.
// the ball and bat are at new position
function doBatBall(bat,ball){
    var mirrorX = 1;
    var mirrorY = 1;

    const s = ballShadow; // alias
    s.x = ball.x;
    s.y = ball.y;
    s.dx = ball.dx;
    s.dy = ball.dy;
    s.x -= s.dx;
    s.y -= s.dy;

    // get the bat half width height
    const batW2 = bat.width / 2;
    const batH2 = bat.height / 2;  

    // and bat size plus radius of ball
    var batH = batH2 + ball.r;
    var batW = batW2 + ball.r;

    // set ball position relative to bats last pos
    s.x -= bat.x;
    s.y -= bat.y;
    
    // set ball delta relative to bat
    s.dx -= bat.dx;
    s.dy -= bat.dy;
    
    // mirror x and or y if needed
    if(s.x < 0){
        mirrorX = -1;
        s.x = -s.x;
        s.dx = -s.dx;
    }
    if(s.y < 0){
        mirrorY = -1;
        s.y = -s.y;
        s.dy = -s.dy;
    }
    
    
    // bat now only has a bottom, right sides and bottom right corner
    var distY = (batH - s.y); // distance from bottom 
    var distX = (batW - s.x); // distance from right

    if(s.dx > 0 && s.dy > 0){ return }// ball moving away so no hit

    var ballSpeed = Math.sqrt(s.dx * s.dx + s.dy * s.dy); // get ball speed relative to bat

    // get x location of intercept for bottom of bat
    var bottomX = s.x +(s.dx / s.dy) * distY;

    // get y location of intercept for right of bat
    var rightY = s.y +(s.dy / s.dx) * distX;

    // get distance to bottom and right intercepts
    var distB = Math.hypot(bottomX - s.x, batH - s.y);
    var distR = Math.hypot(batW - s.x, rightY - s.y);
    var hit = false;

    if(s.dy < 0 && bottomX <= batW2 && distB <= ballSpeed && distB < distR){  // if hit is on bottom and bottom hit is closest
        hit = true;     
        s.y = batH - s.dy * ((ballSpeed - distB) / ballSpeed);
        s.dy = -s.dy;
    }
    if(! hit && s.dx < 0 && rightY <= batH2 && distR <= ballSpeed && distR <= distB){ // if hit is on right and right hit is closest
        hit = true;     
        s.x =  batW  - s.dx * ((ballSpeed - distR) / ballSpeed);;
        s.dx = -s.dx;
    }
    if(!hit){  // if no hit may have intercepted the corner. 
        // find the distance that the corner is from the line segment from the balls pos to the next pos
        const u = ((batW2 - s.x) * s.dx + (batH2 - s.y) * s.dy)/(ballSpeed * ballSpeed);
        
        // get the closest point on the line to the corner
        var cpx = s.x + s.dx * u;
        var cpy = s.y + s.dy * u;
        
        // get ball radius squared
        const radSqr = ball.r * ball.r;
        
        // get the distance of that point from the corner squared
        const dist  = (cpx - batW2) * (cpx - batW2) + (cpy - batH2) * (cpy - batH2);
        
        // is that distance greater than ball radius
        if(dist > radSqr){ return }  // no hit

        // solves the triangle from center to closest point on balls trajectory
        var d = Math.sqrt(radSqr - dist) / ballSpeed;

        // intercept point is closest to line start
        cpx -= s.dx * d;
        cpy -= s.dy * d;
        
        // get the distance from the ball current pos to the intercept point
        d = Math.hypot(cpx - s.x,cpy - s.y);
        
        // is the distance greater than the ball speed then its a miss
        if(d > ballSpeed){  return  } // no hit return
        
        s.x = cpx;  // position of contact
        s.y = cpy;        
        
        // find the normalised tangent at intercept point 
        const ty = (cpx - batW2) / ball.r;
        const tx = -(cpy - batH2) / ball.r;
        
        // calculate the reflection vector
        const bsx = s.dx / ballSpeed;   // normalise ball speed
        const bsy = s.dy / ballSpeed;
        const dot = (bsx * tx + bsy * ty) * 2;
        
        // get the distance the ball travels past the intercept
        d = ballSpeed - d;
        
        // the reflected vector is the balls new delta (this delta is normalised)
        s.dx = (tx * dot - bsx); 
        s.dy = (ty * dot - bsy);
        
        // move the ball the remaining distance away from corner
        s.x += s.dx * d;
        s.y += s.dy * d;        
        
        // set the ball delta to the balls speed
        s.dx *= ballSpeed;
        s.dy *= ballSpeed;
        hit = true;
    }
    
    // if the ball hit the bat restore absolute position
    if(hit){
        // reverse mirror
        s.x *= mirrorX;
        s.dx *= mirrorX;
        s.y *= mirrorY;
        s.dy *= mirrorY;

        // remove bat relative position
        s.x += bat.x;
        s.y += bat.y;
        
        // remove bat relative delta
        s.dx += bat.dx;
        s.dy += bat.dy;
        
        // set the balls new position and delta
        ball.x = s.x;
        ball.y = s.y;
        ball.dx = s.dx;
        ball.dy = s.dy;
    }
    
}





// main update function
function update(timer){

    if(w !== innerWidth || h !== innerHeight){
      cw = (w = canvas.width = innerWidth) / 2;
      ch = (h = canvas.height = innerHeight) / 2;
    }
      
  
    
    ctx.setTransform(1,0,0,1,0,0); // reset transform
    ctx.globalAlpha = 1;           // reset alpha
    ctx.clearRect(0,0,w,h);
    
    // move bat and ball
    bat.update();
    ball.update();
    
    // check for bal bat contact and change ball position and trajectory if needed
    doBatBall(bat,ball);        

    // draw ball and bat
    bat.draw(ctx);
    ball.draw(ctx);
   
    requestAnimationFrame(update);

}
requestAnimationFrame(update);
Run Code Online (Sandbox Code Playgroud)
canvas { position : absolute; top : 0px; left : 0px; }
body {font-family : arial; }
Run Code Online (Sandbox Code Playgroud)
Use the mouse to move the bat and hit the ball.
<canvas id="canvas"></canvas>
Run Code Online (Sandbox Code Playgroud)

这种方法有缺陷。

有可能用球棒将球困住,这样就没有有效的解决方案,例如将球向下压到屏幕底部。在某些时候,球的直径大于墙壁和球棒之间的空间。当这种情况发生时,解决方案将失败并且球将穿过球棒。

在演示中,我们尽一切努力不损失能量,但随着时间的推移,浮点错误将会累积,如果模拟在没有某些输入的情况下运行,这可能会导致能量损失。

由于球棒具有无限的动量,因此很容易将大量能量传递到球上,为了防止球积累太多动量,我为球添加了最大速度。如果球的移动速度快于最大速度,它会逐渐减慢,直到等于或低于最大速度。

有时,如果您以相同的速度将球棒移离球,则由于重力而产生的额外加速度可能会导致球无法正确地从球棒上推开。

  • @cdo256 谢谢,我过度杀掉了这个答案。在写作时也没有时间,并且在我去的时候破解了角碰撞拦截,最终做了一个圆形射线拦截然后找到反射,当我有机会时会修复它。我没有看到的是,OP并不是在球和移动的球棒之后,而是在球和砖块之后(砖块不会移动),所以我的答案是太过分了(除非砖块开始移动),我什至在考虑添加旋转到球碰撞(很高兴我跳过了)。哦,很好地保持我的几何数学练习。 (3认同)