Mr *_*der 3 python transform matplotlib
我正在用以下代码绘制一些数据的均值和方差的变化
import matplotlib.pyplot as pyplot
import numpy
vis_mv(data, ax = None):
if ax is None: ax = pyplot.gca()
cmap = pyplot.get_cmap()
colors = cmap(numpy.linspace(0, 1, len(data)))
xs = numpy.arange(len(data)) + 1
means = numpy.array([ numpy.mean(x) for x in data ])
varis = numpy.array([ numpy.var(x) for x in data ])
vlim = max(1, numpy.amax(varis))
# variance
ax.imshow([[0.,1.],[0.,1.]],
cmap = cmap, interpolation = 'bicubic',
extent = (1, len(data), -vlim, vlim), aspect = 'auto'
)
ax.fill_between(xs, -vlim, -varis, color = 'white')
ax.fill_between(xs, varis, vlim, color = 'white')
# mean
ax.plot(xs, means, color = 'white', zorder = 1)
ax.scatter(xs, means, color = colors, edgecolor = 'white', zorder = 2)
return ax
Run Code Online (Sandbox Code Playgroud)
这工作得很好:
但是现在,我希望能够以垂直方式使用此可视化效果,因为某种高级彩条在另一块绘图旁边很麻烦。我希望有可能旋转整个轴及其所有内容,但是我只能找到这个问题,这个问题也没有真正的答案。因此,我尝试自己按以下步骤进行操作:
from matplotlib.transforms import Affine2D
ax = vis_mv()
r = Affine2D().rotate_deg(90) + ax.transData
for x in ax.images + ax.lines + ax.collections:
x.set_transform(r)
old = ax.axis()
ax.axis(old[2:4] + old[0:2])
Run Code Online (Sandbox Code Playgroud)
这几乎可以解决问题(请注意,过去沿白线分布的散乱点是如何被炸毁而不会按预期旋转的)。
不幸的是,
PathCollection
保留结果的结果scatter
与预期的不同。在尝试了一些东西之后,我发现散点图具有某种偏移量转换,这似乎与其他集合中的常规转换等效。
x = numpy.arange(5)
ax = pyplot.gca()
p0, = ax.plot(x)
p1 = ax.scatter(x,x)
ax.transData == p0.get_transform() # True
ax.transData == p1.get_offset_transform() # True
Run Code Online (Sandbox Code Playgroud)
似乎我可能想更改散点图的偏移变换,但是我没有找到能使我在上更改该变换的方法PathCollection
。而且,这将使我真正想做的事情变得更加不便。
有人知道是否有可能更改偏移量转换吗?
提前致谢
不幸的是,PathCollection
该.set_offset_transform()
方法没有方法,但是可以访问私有_transOffset
属性并为其设置旋转变换。
import matplotlib.pyplot as plt
from matplotlib.transforms import Affine2D
from matplotlib.collections import PathCollection
import numpy as np; np.random.seed(3)
def vis_mv(data, ax = None):
if ax is None: ax = plt.gca()
cmap = plt.get_cmap()
colors = cmap(np.linspace(0, 1, len(data)))
xs = np.arange(len(data)) + 1
means = np.array([ np.mean(x) for x in data ])
varis = np.array([ np.var(x) for x in data ])
vlim = max(1, np.amax(varis))
# variance
ax.imshow([[0.,1.],[0.,1.]],
cmap = cmap, interpolation = 'bicubic',
extent = (1, len(data), -vlim, vlim), aspect = 'auto' )
ax.fill_between(xs, -vlim, -varis, color = 'white')
ax.fill_between(xs, varis, vlim, color = 'white')
# mean
ax.plot(xs, means, color = 'white', zorder = 1)
ax.scatter(xs, means, color = colors, edgecolor = 'white', zorder = 2)
return ax
data = np.random.normal(size=(9, 9))
ax = vis_mv(data)
r = Affine2D().rotate_deg(90)
for x in ax.images + ax.lines + ax.collections:
trans = x.get_transform()
x.set_transform(r+trans)
if isinstance(x, PathCollection):
transoff = x.get_offset_transform()
x._transOffset = r+transoff
old = ax.axis()
ax.axis(old[2:4] + old[0:2])
plt.show()
Run Code Online (Sandbox Code Playgroud)