mat*_*tes 516 python model machine-learning tensorflow
在Tensorflow中训练模型后:
san*_*kit 249
我正在改进我的答案,添加更多有关保存和恢复模型的详细信息.
在(和之后)Tensorflow版本0.11:
保存模型:
import tensorflow as tf
#Prepare to feed input, i.e. feed_dict and placeholders
w1 = tf.placeholder("float", name="w1")
w2 = tf.placeholder("float", name="w2")
b1= tf.Variable(2.0,name="bias")
feed_dict ={w1:4,w2:8}
#Define a test operation that we will restore
w3 = tf.add(w1,w2)
w4 = tf.multiply(w3,b1,name="op_to_restore")
sess = tf.Session()
sess.run(tf.global_variables_initializer())
#Create a saver object which will save all the variables
saver = tf.train.Saver()
#Run the operation by feeding input
print sess.run(w4,feed_dict)
#Prints 24 which is sum of (w1+w2)*b1
#Now, save the graph
saver.save(sess, 'my_test_model',global_step=1000)
Run Code Online (Sandbox Code Playgroud)
恢复模型:
import tensorflow as tf
sess=tf.Session()
#First let's load meta graph and restore weights
saver = tf.train.import_meta_graph('my_test_model-1000.meta')
saver.restore(sess,tf.train.latest_checkpoint('./'))
# Access saved Variables directly
print(sess.run('bias:0'))
# This will print 2, which is the value of bias that we saved
# Now, let's access and create placeholders variables and
# create feed-dict to feed new data
graph = tf.get_default_graph()
w1 = graph.get_tensor_by_name("w1:0")
w2 = graph.get_tensor_by_name("w2:0")
feed_dict ={w1:13.0,w2:17.0}
#Now, access the op that you want to run.
op_to_restore = graph.get_tensor_by_name("op_to_restore:0")
print sess.run(op_to_restore,feed_dict)
#This will print 60 which is calculated
Run Code Online (Sandbox Code Playgroud)
这里和一些更高级的用例已经在这里得到了很好的解释.
小智 177
在(及之后)TensorFlow版本0.11.0RC1中,您可以通过调用tf.train.export_meta_graph并tf.train.import_meta_graph根据https://www.tensorflow.org/programmers_guide/meta_graph直接保存和恢复您的模型.
w1 = tf.Variable(tf.truncated_normal(shape=[10]), name='w1')
w2 = tf.Variable(tf.truncated_normal(shape=[20]), name='w2')
tf.add_to_collection('vars', w1)
tf.add_to_collection('vars', w2)
saver = tf.train.Saver()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver.save(sess, 'my-model')
# `save` method will call `export_meta_graph` implicitly.
# you will get saved graph files:my-model.meta
Run Code Online (Sandbox Code Playgroud)
sess = tf.Session()
new_saver = tf.train.import_meta_graph('my-model.meta')
new_saver.restore(sess, tf.train.latest_checkpoint('./'))
all_vars = tf.get_collection('vars')
for v in all_vars:
v_ = sess.run(v)
print(v_)
Run Code Online (Sandbox Code Playgroud)
Rya*_*ssi 126
对于TensorFlow版本<0.11.0RC1:
保存的检查点包含Variable模型中s的值,而不是模型/图形本身,这意味着恢复检查点时图形应该相同.
这是一个线性回归的例子,其中有一个训练循环可以保存变量检查点,还有一个评估部分可以恢复先前运行中保存的变量并计算预测.当然,如果您愿意,还可以恢复变量并继续训练.
x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
w = tf.Variable(tf.zeros([1, 1], dtype=tf.float32))
b = tf.Variable(tf.ones([1, 1], dtype=tf.float32))
y_hat = tf.add(b, tf.matmul(x, w))
...more setup for optimization and what not...
saver = tf.train.Saver() # defaults to saving all variables - in this case w and b
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
if FLAGS.train:
for i in xrange(FLAGS.training_steps):
...training loop...
if (i + 1) % FLAGS.checkpoint_steps == 0:
saver.save(sess, FLAGS.checkpoint_dir + 'model.ckpt',
global_step=i+1)
else:
# Here's where you're restoring the variables w and b.
# Note that the graph is exactly as it was when the variables were
# saved in a prior training run.
ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
else:
...no checkpoint found...
# Now you can run the model to get predictions
batch_x = ...load some data...
predictions = sess.run(y_hat, feed_dict={x: batch_x})
Run Code Online (Sandbox Code Playgroud)
下面是文档的Variables,这包括保存和恢复.这里是文档的Saver.
ted*_*ted 93
tf.saved_model许多好的答案,为了完整性,我将加上我的2美分:simple_save.也是使用simple_saveAPI 的独立代码示例.
Python 3; Tensorflow 1.7
# Create some variables.
v1 = tf.get_variable("v1", shape=[3], initializer = tf.zeros_initializer)
v2 = tf.get_variable("v2", shape=[5], initializer = tf.zeros_initializer)
inc_v1 = v1.assign(v1+1)
dec_v2 = v2.assign(v2-1)
# Add an op to initialize the variables.
init_op = tf.global_variables_initializer()
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Later, launch the model, initialize the variables, do some work, and save the
# variables to disk.
with tf.Session() as sess:
sess.run(init_op)
# Do some work with the model.
inc_v1.op.run()
dec_v2.op.run()
# Save the variables to disk.
save_path = saver.save(sess, "/tmp/model.ckpt")
print("Model saved in path: %s" % save_path)
Run Code Online (Sandbox Code Playgroud)
恢复:
tf.reset_default_graph()
# Create some variables.
v1 = tf.get_variable("v1", shape=[3])
v2 = tf.get_variable("v2", shape=[5])
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Later, launch the model, use the saver to restore variables from disk, and
# do some work with the model.
with tf.Session() as sess:
# Restore variables from disk.
saver.restore(sess, "/tmp/model.ckpt")
print("Model restored.")
# Check the values of the variables
print("v1 : %s" % v1.eval())
print("v2 : %s" % v2.eval())
Run Code Online (Sandbox Code Playgroud)
以下代码为演示生成随机数据.
tf.data.Dataset,然后它的Dataset.我们得到迭代器生成的张量,调用Iterator它将作为我们模型的输入.input_tensor以下部分构建的:基于GRU的双向RNN,后跟密集分类器.因为为什么不呢.input_tensor优化的softmax_cross_entropy_with_logits.经过2个时期(每批2批),我们保存了"训练有素"的模型Adam.如果按原样运行代码,则模型将保存在tf.saved_model.simple_save当前工作目录中调用的文件夹中.simple/.我们使用tf.saved_model.loader.load和抓取占位符和logits 以及graph.get_tensor_by_name初始化操作Iterator.码:
import tensorflow as tf
from tensorflow.saved_model import tag_constants
with tf.Graph().as_default():
with tf.Session() as sess:
...
# Saving
inputs = {
"batch_size_placeholder": batch_size_placeholder,
"features_placeholder": features_placeholder,
"labels_placeholder": labels_placeholder,
}
outputs = {"prediction": model_output}
tf.saved_model.simple_save(
sess, 'path/to/your/location/', inputs, outputs
)
Run Code Online (Sandbox Code Playgroud)
这将打印:
graph = tf.Graph()
with restored_graph.as_default():
with tf.Session() as sess:
tf.saved_model.loader.load(
sess,
[tag_constants.SERVING],
'path/to/your/location/',
)
batch_size_placeholder = graph.get_tensor_by_name('batch_size_placeholder:0')
features_placeholder = graph.get_tensor_by_name('features_placeholder:0')
labels_placeholder = graph.get_tensor_by_name('labels_placeholder:0')
prediction = restored_graph.get_tensor_by_name('dense/BiasAdd:0')
sess.run(prediction, feed_dict={
batch_size_placeholder: some_value,
features_placeholder: some_other_value,
labels_placeholder: another_value
})
Run Code Online (Sandbox Code Playgroud)
Tom*_*Tom 74
我的环境:Python 3.6,Tensorflow 1.3.0
虽然有很多解决方案,但大多数是基于tf.train.Saver.当我们加载.ckpt保存的Saver,我们必须要么重新定义tensorflow网络,或者使用一些奇怪的和难以记住的名称,例如'placehold_0:0','dense/Adam/Weight:0'.在这里,我建议使用tf.saved_model,下面给出一个最简单的示例,您可以从服务TensorFlow模型中了解更多信息:
保存模型:
import tensorflow as tf
# define the tensorflow network and do some trains
x = tf.placeholder("float", name="x")
w = tf.Variable(2.0, name="w")
b = tf.Variable(0.0, name="bias")
h = tf.multiply(x, w)
y = tf.add(h, b, name="y")
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# save the model
export_path = './savedmodel'
builder = tf.saved_model.builder.SavedModelBuilder(export_path)
tensor_info_x = tf.saved_model.utils.build_tensor_info(x)
tensor_info_y = tf.saved_model.utils.build_tensor_info(y)
prediction_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs={'x_input': tensor_info_x},
outputs={'y_output': tensor_info_y},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
builder.add_meta_graph_and_variables(
sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
prediction_signature
},
)
builder.save()
Run Code Online (Sandbox Code Playgroud)
加载模型:
import tensorflow as tf
sess=tf.Session()
signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
input_key = 'x_input'
output_key = 'y_output'
export_path = './savedmodel'
meta_graph_def = tf.saved_model.loader.load(
sess,
[tf.saved_model.tag_constants.SERVING],
export_path)
signature = meta_graph_def.signature_def
x_tensor_name = signature[signature_key].inputs[input_key].name
y_tensor_name = signature[signature_key].outputs[output_key].name
x = sess.graph.get_tensor_by_name(x_tensor_name)
y = sess.graph.get_tensor_by_name(y_tensor_name)
y_out = sess.run(y, {x: 3.0})
Run Code Online (Sandbox Code Playgroud)
Yar*_*tov 55
有两个部分的模型,该模型定义,通过保存Supervisor为graph.pbtxt模型中的目录和张量的数值,保存到像检查点文件model.ckpt-1003418.
可以使用恢复模型定义tf.import_graph_def,并使用恢复权重Saver.
但是,Saver使用附加到模型Graph的变量的特殊集合保持列表,并且不使用import_graph_def初始化此集合,因此您不能将这两者一起使用(它在我们的路线图中进行修复).目前,您必须使用Ryan Sepassi的方法 - 手动构建具有相同节点名称的图形,并用于Saver将权重加载到其中.
(或者你可以通过使用import_graph_def,手动创建变量,并tf.add_to_collection(tf.GraphKeys.VARIABLES, variable)为每个变量使用,然后使用Saver)来破解它
Him*_*bal 39
你也可以采取这种更简单的方式.
W1 = tf.Variable(tf.truncated_normal([6, 6, 1, K], stddev=0.1), name="W1")
B1 = tf.Variable(tf.constant(0.1, tf.float32, [K]), name="B1")
Similarly, W2, B2, W3, .....
Run Code Online (Sandbox Code Playgroud)
Saver将会话保存在模型中并保存model_saver = tf.train.Saver()
# Train the model and save it in the end
model_saver.save(session, "saved_models/CNN_New.ckpt")
Run Code Online (Sandbox Code Playgroud)
with tf.Session(graph=graph_cnn) as session:
model_saver.restore(session, "saved_models/CNN_New.ckpt")
print("Model restored.")
print('Initialized')
Run Code Online (Sandbox Code Playgroud)
W1 = session.run(W1)
print(W1)
Run Code Online (Sandbox Code Playgroud)
在不同的python实例中运行时,请使用
with tf.Session() as sess:
# Restore latest checkpoint
saver.restore(sess, tf.train.latest_checkpoint('saved_model/.'))
# Initalize the variables
sess.run(tf.global_variables_initializer())
# Get default graph (supply your custom graph if you have one)
graph = tf.get_default_graph()
# It will give tensor object
W1 = graph.get_tensor_by_name('W1:0')
# To get the value (numpy array)
W1_value = session.run(W1)
Run Code Online (Sandbox Code Playgroud)
Min*_*ark 20
在大多数情况下,使用a从磁盘保存和恢复tf.train.Saver是最佳选择:
... # build your model
saver = tf.train.Saver()
with tf.Session() as sess:
... # train the model
saver.save(sess, "/tmp/my_great_model")
with tf.Session() as sess:
saver.restore(sess, "/tmp/my_great_model")
... # use the model
Run Code Online (Sandbox Code Playgroud)
您还可以保存/恢复图形结构本身(有关详细信息,请参阅MetaGraph文档).默认情况下,Saver将图形结构保存到.meta文件中.你可以打电话import_meta_graph()来恢复它.它恢复图形结构并返回一个Saver可用于恢复模型状态的结构:
saver = tf.train.import_meta_graph("/tmp/my_great_model.meta")
with tf.Session() as sess:
saver.restore(sess, "/tmp/my_great_model")
... # use the model
Run Code Online (Sandbox Code Playgroud)
但是,有些情况下你需要更快的东西.例如,如果您实施提前停止,则希望每次模型在训练期间改进时保存检查点(在验证集上测量),然后如果一段时间没有进展,则需要回滚到最佳模型.如果每次改进时将模型保存到磁盘,都会极大地减慢培训速度.诀窍是将变量状态保存到内存,然后稍后恢复它们:
... # build your model
# get a handle on the graph nodes we need to save/restore the model
graph = tf.get_default_graph()
gvars = graph.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
assign_ops = [graph.get_operation_by_name(v.op.name + "/Assign") for v in gvars]
init_values = [assign_op.inputs[1] for assign_op in assign_ops]
with tf.Session() as sess:
... # train the model
# when needed, save the model state to memory
gvars_state = sess.run(gvars)
# when needed, restore the model state
feed_dict = {init_value: val
for init_value, val in zip(init_values, gvars_state)}
sess.run(assign_ops, feed_dict=feed_dict)
Run Code Online (Sandbox Code Playgroud)
快速解释:当您创建变量时X,TensorFlow会自动创建一个赋值操作X/Assign来设置变量的初始值.我们只使用这些现有的赋值操作,而不是创建占位符和额外的赋值操作(这会使图形变得混乱).每个赋值op的第一个输入是对它应该初始化的变量的引用,第二个input(assign_op.inputs[1])是初始值.因此,为了设置我们想要的任何值(而不是初始值),我们需要使用a feed_dict并替换初始值.是的,TensorFlow允许您为任何操作提供值,而不仅仅是占位符,所以这样可以正常工作.
小智 17
正如Yaroslav所说,你可以通过导入图形,手动创建变量,然后使用Saver来修复graph_def和checkpoint.
我实现了这个用于个人用途,所以我虽然在这里分享代码.
链接:https://gist.github.com/nikitakit/6ef3b72be67b86cb7868
(当然,这是一个黑客攻击,并且无法保证以这种方式保存的模型在未来版本的TensorFlow中仍然可读.)
Ser*_*nov 14
如果它是内部保存的模型,则只需为所有变量指定恢复器
restorer = tf.train.Saver(tf.all_variables())
Run Code Online (Sandbox Code Playgroud)
并使用它来恢复当前会话中的变量:
restorer.restore(self._sess, model_file)
Run Code Online (Sandbox Code Playgroud)
对于外部模型,您需要指定从其变量名到变量名的映射.您可以使用该命令查看模型变量名称
python /path/to/tensorflow/tensorflow/python/tools/inspect_checkpoint.py --file_name=/path/to/pretrained_model/model.ckpt
Run Code Online (Sandbox Code Playgroud)
inspect_checkpoint.py脚本可以在Tensorflow源的"./tensorflow/python/tools"文件夹中找到.
要指定映射,可以使用我的Tensorflow-Worklab,它包含一组类和脚本来训练和重新训练不同的模型.它包括一个重新训练ResNet模型的例子,位于这里
Mar*_*cka 12
这是我对两个基本情况的简单解决方案,它们是关于是否要从文件加载图形或在运行时构建它.
这个答案适用于Tensorflow 0.12+(包括1.0).
graph = ... # build the graph
saver = tf.train.Saver() # create the saver after the graph
with ... as sess: # your session object
saver.save(sess, 'my-model')
Run Code Online (Sandbox Code Playgroud)
graph = ... # build the graph
saver = tf.train.Saver() # create the saver after the graph
with ... as sess: # your session object
saver.restore(sess, tf.train.latest_checkpoint('./'))
# now you can use the graph, continue training or whatever
Run Code Online (Sandbox Code Playgroud)
使用此技术时,请确保所有图层/变量都已明确设置唯一名称.否则,Tensorflow将使名称本身唯一,因此它们将与文件中存储的名称不同.这在以前的技术中不是问题,因为名称在加载和保存时都以相同的方式被"损坏".
graph = ... # build the graph
for op in [ ... ]: # operators you want to use after restoring the model
tf.add_to_collection('ops_to_restore', op)
saver = tf.train.Saver() # create the saver after the graph
with ... as sess: # your session object
saver.save(sess, 'my-model')
Run Code Online (Sandbox Code Playgroud)
with ... as sess: # your session object
saver = tf.train.import_meta_graph('my-model.meta')
saver.restore(sess, tf.train.latest_checkpoint('./'))
ops = tf.get_collection('ops_to_restore') # here are your operators in the same order in which you saved them to the collection
Run Code Online (Sandbox Code Playgroud)
如果使用tf.train.MonitoredTrainingSession作为默认会话,则无需添加额外代码来执行保存/恢复操作.只需将检查点目录名称传递给MonitoredTrainingSession的构造函数,它将使用会话挂钩来处理这些.
TF2.0我看到使用 TF1.x 保存模型的好答案。我想在保存tensorflow.keras模型时提供更多的指针,这有点复杂,因为有很多方法可以保存模型。
在这里,我提供了一个将tensorflow.keras模型保存到model_path当前目录下的文件夹的示例。这适用于最新的 tensorflow (TF2.0)。如果在不久的将来有任何变化,我将更新此描述。
import tensorflow as tf
from tensorflow import keras
mnist = tf.keras.datasets.mnist
#import data
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# create a model
def create_model():
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
# compile the model
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
return model
# Create a basic model instance
model=create_model()
model.fit(x_train, y_train, epochs=1)
loss, acc = model.evaluate(x_test, y_test,verbose=1)
print("Original model, accuracy: {:5.2f}%".format(100*acc))
# Save entire model to a HDF5 file
model.save('./model_path/my_model.h5')
# Recreate the exact same model, including weights and optimizer.
new_model = keras.models.load_model('./model_path/my_model.h5')
loss, acc = new_model.evaluate(x_test, y_test)
print("Restored model, accuracy: {:5.2f}%".format(100*acc))
Run Code Online (Sandbox Code Playgroud)
如果您只想保存模型权重,然后加载权重以恢复模型,那么
model.fit(x_train, y_train, epochs=5)
loss, acc = model.evaluate(x_test, y_test,verbose=1)
print("Original model, accuracy: {:5.2f}%".format(100*acc))
# Save the weights
model.save_weights('./checkpoints/my_checkpoint')
# Restore the weights
model = create_model()
model.load_weights('./checkpoints/my_checkpoint')
loss,acc = model.evaluate(x_test, y_test)
print("Restored model, accuracy: {:5.2f}%".format(100*acc))
Run Code Online (Sandbox Code Playgroud)
# include the epoch in the file name. (uses `str.format`)
checkpoint_path = "training_2/cp-{epoch:04d}.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(
checkpoint_path, verbose=1, save_weights_only=True,
# Save weights, every 5-epochs.
period=5)
model = create_model()
model.save_weights(checkpoint_path.format(epoch=0))
model.fit(train_images, train_labels,
epochs = 50, callbacks = [cp_callback],
validation_data = (test_images,test_labels),
verbose=0)
latest = tf.train.latest_checkpoint(checkpoint_dir)
new_model = create_model()
new_model.load_weights(latest)
loss, acc = new_model.evaluate(test_images, test_labels)
print("Restored model, accuracy: {:5.2f}%".format(100*acc))
Run Code Online (Sandbox Code Playgroud)
import tensorflow as tf
from tensorflow import keras
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# Custom Loss1 (for example)
@tf.function()
def customLoss1(yTrue,yPred):
return tf.reduce_mean(yTrue-yPred)
# Custom Loss2 (for example)
@tf.function()
def customLoss2(yTrue, yPred):
return tf.reduce_mean(tf.square(tf.subtract(yTrue,yPred)))
def create_model():
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy', customLoss1, customLoss2])
return model
# Create a basic model instance
model=create_model()
# Fit and evaluate model
model.fit(x_train, y_train, epochs=1)
loss, acc,loss1, loss2 = model.evaluate(x_test, y_test,verbose=1)
print("Original model, accuracy: {:5.2f}%".format(100*acc))
model.save("./model.h5")
new_model=tf.keras.models.load_model("./model.h5",custom_objects={'customLoss1':customLoss1,'customLoss2':customLoss2})
Run Code Online (Sandbox Code Playgroud)
当我们有如下例 ( tf.tile)中的自定义操作时,我们需要创建一个函数并用 Lambda 层包装。否则无法保存模型。
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Input, Lambda
from tensorflow.keras import Model
def my_fun(a):
out = tf.tile(a, (1, tf.shape(a)[0]))
return out
a = Input(shape=(10,))
#out = tf.tile(a, (1, tf.shape(a)[0]))
out = Lambda(lambda x : my_fun(x))(a)
model = Model(a, out)
x = np.zeros((50,10), dtype=np.float32)
print(model(x).numpy())
model.save('my_model.h5')
#load the model
new_model=tf.keras.models.load_model("my_model.h5")
Run Code Online (Sandbox Code Playgroud)
我想我已经介绍了保存 tf.keras 模型的多种方法中的一些。但是,还有许多其他方法。如果您发现上面没有涵盖您的用例,请在下面发表评论。谢谢!
这里的所有答案都很棒,但我想添加两件事.
首先,要详细说明@ user7505159的答案,"./"对于添加到要还原的文件名的开头很重要.
例如,您可以在文件名中保存没有"./"的图形,如下所示:
# Some graph defined up here with specific names
saver = tf.train.Saver()
save_file = 'model.ckpt'
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver.save(sess, save_file)
Run Code Online (Sandbox Code Playgroud)
但是为了恢复图形,您可能需要在文件名前加上"./":
# Same graph defined up here
saver = tf.train.Saver()
save_file = './' + 'model.ckpt' # String addition used for emphasis
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver.restore(sess, save_file)
Run Code Online (Sandbox Code Playgroud)
您并不总是需要"./",但它可能会导致问题,具体取决于您的环境和TensorFlow版本.
它还想提到sess.run(tf.global_variables_initializer())在恢复会话之前这一点很重要.
如果在尝试还原已保存的会话时收到有关未初始化变量的错误,请确保在行sess.run(tf.global_variables_initializer())之前包含该错误saver.restore(sess, save_file).它可以让你头疼.
小智 7
如问题6255中所述:
use '**./**model_name.ckpt'
saver.restore(sess,'./my_model_final.ckpt')
Run Code Online (Sandbox Code Playgroud)
代替
saver.restore('my_model_final.ckpt')
Run Code Online (Sandbox Code Playgroud)
根据新的Tensorflow版本,tf.train.Checkpoint保存和还原模型的首选方法是:
Checkpoint.save并Checkpoint.restore写入和读取基于对象的检查点,而tf.train.Saver则写入和读取基于variable.name的检查点。基于对象的检查点保存带有命名边的Python对象(层,优化程序,变量等)之间的依存关系图,该图用于在恢复检查点时匹配变量。它对Python程序中的更改可能更健壮,并有助于在急切执行时支持变量的创建时恢复。身高tf.train.Checkpoint超过tf.train.Saver对新代码。
这是一个例子:
import tensorflow as tf
import os
tf.enable_eager_execution()
checkpoint_directory = "/tmp/training_checkpoints"
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
checkpoint = tf.train.Checkpoint(optimizer=optimizer, model=model)
status = checkpoint.restore(tf.train.latest_checkpoint(checkpoint_directory))
for _ in range(num_training_steps):
optimizer.minimize( ... ) # Variables will be restored on creation.
status.assert_consumed() # Optional sanity checks.
checkpoint.save(file_prefix=checkpoint_prefix)
Run Code Online (Sandbox Code Playgroud)
对于tensorflow 2.0,它很简单
Run Code Online (Sandbox Code Playgroud)# Save the model model.save('path_to_my_model.h5')
恢复:
new_model = tensorflow.keras.models.load_model('path_to_my_model.h5')
Run Code Online (Sandbox Code Playgroud)
对于 tensorflow-2.0
这很简单。
import tensorflow as tf
Run Code Online (Sandbox Code Playgroud)
model.save("model_name")
Run Code Online (Sandbox Code Playgroud)
model = tf.keras.models.load_model('model_name')
Run Code Online (Sandbox Code Playgroud)
小智 5
Tensorflow 2.6:现在变得更加简单,您可以以两种格式保存模型
以两种格式保存模型:
from tensorflow.keras import Model
inputs = tf.keras.Input(shape=(224,224,3))
y = tf.keras.layers.Conv2D(24, 3, activation='relu', input_shape=input_shape[1:])(inputs)
outputs = tf.keras.layers.Dense(5, activation=tf.nn.softmax)(y)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
model.save("saved_model/my_model") #To Save in Saved_model format
model.save("my_model.h5") #To save model in H5 or HDF5 format
Run Code Online (Sandbox Code Playgroud)
以两种格式加载模型
import tensorflow as tf
h5_model = tf.keras.models.load_model("my_model.h5") # loading model in h5 format
h5_model.summary()
saved_m = tf.keras.models.load_model("saved_model/my_model") #loading model in saved_model format
saved_m.summary()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
323479 次 |
| 最近记录: |