如何在Python中优化MAPE代码?

Spa*_*Boy 5 python statistics numpy machine-learning data-science

我需要有一个MAPE函数,但是我无法在标准包中找到它......下面,我实现了这个函数.

def mape(actual, predict): 
    tmp, n = 0.0, 0
    for i in range(0, len(actual)):
        if actual[i] <> 0:
            tmp += math.fabs(actual[i]-predict[i])/actual[i]
            n += 1
    return (tmp/n)
Run Code Online (Sandbox Code Playgroud)

我不喜欢它,它在速度方面超级不理想.如何将代码重写为Pythonic方式并提高速度?

Div*_*kar 7

这是一种矢量化方法masking-

def mape_vectorized(a, b): 
    mask = a <> 0
    return (np.fabs(a[mask] - b[mask])/a[mask]).mean()
Run Code Online (Sandbox Code Playgroud)

计算masking之后可能更快一点division-

def mape_vectorized_v2(a, b): 
    mask = a <> 0
    return (np.fabs(a - b)/a)[mask].mean() 
Run Code Online (Sandbox Code Playgroud)

运行时测试 -

In [217]: a = np.random.randint(-10,10,(10000))
     ...: b = np.random.randint(-10,10,(10000))
     ...: 

In [218]: %timeit mape(a,b)
100 loops, best of 3: 11.7 ms per loop

In [219]: %timeit mape_vectorized(a,b)
1000 loops, best of 3: 273 µs per loop

In [220]: %timeit mape_vectorized_v2(a,b)
1000 loops, best of 3: 220 µs per loop
Run Code Online (Sandbox Code Playgroud)

  • `&lt;&gt;` 操作是什么? (2认同)