在matplotlib中分页/滚动一组2D热图

irr*_*rom 5 python plot matplotlib

我正在生成一组3D数据的2D热图.我希望能够有一个机制来交互式地浏览每个窗格.下面是一个简单的示例代码,我希望能够通过滑动条(或其他方法)以交互方式查看两个窗格(即z = [0,1]).matplotlib可以实现这一点,还是生成图像文件后我需要做后期处理?

import numpy as np
from matplotlib import pyplot as plt
data = np.random.randint(10, size=(5, 5, 2))
data_slice = np.zeros((5,5))
for i in range(0, 5):
  for j in range(0, 5):
     data_slice[i][j] = data[i][j][0]
plt.imshow(data_slice, cmap='hot', interpolation='nearest')
plt.show()
Run Code Online (Sandbox Code Playgroud)

编辑:我希望能够以交互方式执行此操作,并且似乎可能的重复尝试自动执行此操作.

Imp*_*est 11

解决方案确实可以使用滑块,就像@hashmuke的优秀答案一样.在他的回答中,他提到 "滑块是连续的,而层索引是一个离散的整数[...]"

这让我想到了一个没有这个限制的解决方案,并且具有
更像页面的外观和感觉.

结果是PageSlider.Slider对它进行子类化 会使用滑块功能,但会以整数步开始显示滑块1.它将页面的数量numpages作为init参数,但除了Slider从外部看到的那样起作用.此外,它还提供后退和前进按钮.

类似于@hashmuke的一个例子,在类下面给出.

import matplotlib.widgets
import matplotlib.patches
import mpl_toolkits.axes_grid1

class PageSlider(matplotlib.widgets.Slider):

    def __init__(self, ax, label, numpages = 10, valinit=0, valfmt='%1d', 
                 closedmin=True, closedmax=True,  
                 dragging=True, **kwargs):

        self.facecolor=kwargs.get('facecolor',"w")
        self.activecolor = kwargs.pop('activecolor',"b")
        self.fontsize = kwargs.pop('fontsize', 10)
        self.numpages = numpages

        super(PageSlider, self).__init__(ax, label, 0, numpages, 
                            valinit=valinit, valfmt=valfmt, **kwargs)

        self.poly.set_visible(False)
        self.vline.set_visible(False)
        self.pageRects = []
        for i in range(numpages):
            facecolor = self.activecolor if i==valinit else self.facecolor
            r  = matplotlib.patches.Rectangle((float(i)/numpages, 0), 1./numpages, 1, 
                                transform=ax.transAxes, facecolor=facecolor)
            ax.add_artist(r)
            self.pageRects.append(r)
            ax.text(float(i)/numpages+0.5/numpages, 0.5, str(i+1),  
                    ha="center", va="center", transform=ax.transAxes,
                    fontsize=self.fontsize)
        self.valtext.set_visible(False)

        divider = mpl_toolkits.axes_grid1.make_axes_locatable(ax)
        bax = divider.append_axes("right", size="5%", pad=0.05)
        fax = divider.append_axes("right", size="5%", pad=0.05)
        self.button_back = matplotlib.widgets.Button(bax, label=ur'$\u25C0$', 
                        color=self.facecolor, hovercolor=self.activecolor)
        self.button_forward = matplotlib.widgets.Button(fax, label=ur'$\u25B6$', 
                        color=self.facecolor, hovercolor=self.activecolor)
        self.button_back.label.set_fontsize(self.fontsize)
        self.button_forward.label.set_fontsize(self.fontsize)
        self.button_back.on_clicked(self.backward)
        self.button_forward.on_clicked(self.forward)

    def _update(self, event):
        super(PageSlider, self)._update(event)
        i = int(self.val)
        if i >=self.valmax:
            return
        self._colorize(i)

    def _colorize(self, i):
        for j in range(self.numpages):
            self.pageRects[j].set_facecolor(self.facecolor)
        self.pageRects[i].set_facecolor(self.activecolor)

    def forward(self, event):
        current_i = int(self.val)
        i = current_i+1
        if (i < self.valmin) or (i >= self.valmax):
            return
        self.set_val(i)
        self._colorize(i)

    def backward(self, event):
        current_i = int(self.val)
        i = current_i-1
        if (i < self.valmin) or (i >= self.valmax):
            return
        self.set_val(i)
        self._colorize(i)


if __name__ == "__main__":
    import numpy as np
    from matplotlib import pyplot as plt


    num_pages = 23
    data = np.random.rand(9, 9, num_pages)

    fig, ax = plt.subplots()
    fig.subplots_adjust(bottom=0.18)

    im = ax.imshow(data[:, :, 0], cmap='viridis', interpolation='nearest')

    ax_slider = fig.add_axes([0.1, 0.05, 0.8, 0.04])
    slider = PageSlider(ax_slider, 'Page', num_pages, activecolor="orange")

    def update(val):
        i = int(slider.val)
        im.set_data(data[:,:,i])

    slider.on_changed(update)

    plt.show() 
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述


has*_*uke 6

您可以按照安德鲁评论的建议为图层设置动画,也可以使用滑块手动浏览图层,如下所示:

import numpy as np
from matplotlib import pyplot as plt
from matplotlib.widgets import Slider

# generate a five layer data 
data = np.random.randint(10, size=(5, 5, 5))
# current layer index start with the first layer 
idx = 0

# figure axis setup 
fig, ax = plt.subplots()
fig.subplots_adjust(bottom=0.15)

# display initial image 
im_h = ax.imshow(data[:, :, idx], cmap='hot', interpolation='nearest')

# setup a slider axis and the Slider
ax_depth = plt.axes([0.23, 0.02, 0.56, 0.04])
slider_depth = Slider(ax_depth, 'depth', 0, data.shape[2]-1, valinit=idx)

# update the figure with a change on the slider 
def update_depth(val):
    idx = int(round(slider_depth.val))
    im_h.set_data(data[:, :, idx])

slider_depth.on_changed(update_depth)

plt.show()
Run Code Online (Sandbox Code Playgroud)

滑块是继续而图层索引是离散整数,我希望不是问题.这是结果图,

在此输入图像描述

  • 您可以重新定义 `matplotlib.widgets.Slider` - 特别是 `set_val` 方法,如 /sf/ask/955947121/ 所示。为了格式化你的时间,你可以使用 `datetime` 模块中的 `datetime`。`datetime.fromtimestamp(92).strftime("%M:%S")` =&gt; '01:32' (2认同)