Ale*_*uya 39
组:
redisConn.set("key", df.to_msgpack(compress='zlib'))
Run Code Online (Sandbox Code Playgroud)
得到:
pd.read_msgpack(redisConn.get("key"))
Run Code Online (Sandbox Code Playgroud)
由于Decimal数据框中的对象,我无法使用 msgpack 。相反,我像这样将 pickle 和 zlib 组合在一起,假设有一个数据帧df和一个本地 Redis 实例:
import pickle
import redis
import zlib
EXPIRATION_SECONDS = 600
r = redis.StrictRedis(host='localhost', port=6379, db=0)
# Set
r.setex("key", EXPIRATION_SECONDS, zlib.compress( pickle.dumps(df)))
# Get
rehydrated_df = pickle.loads(zlib.decompress(r.get("key")))
Run Code Online (Sandbox Code Playgroud)
没有任何关于此的特定数据框。
注意事项
msgpack更好 - 如果它适合您,请使用它小智 7
to_msgpack 在最新版本的 Pandas 中不可用。
import redis
import pandas as pd
# Create a redis client
redisClient = redis.StrictRedis(host='localhost', port=6379, db=0)
# Create un dataframe
dd = {'ID': ['H576','H577','H578','H600', 'H700'],
'CD': ['AAAAAAA', 'BBBBB', 'CCCCCC','DDDDDD', 'EEEEEEE']}
df = pd.DataFrame(dd)
data = df.to_json()
redisClient.set('dd', data)
# Retrieve the data
blob = redisClient.get('dd')
df_from_redis = pd.read_json(blob)
df_from_redis.head()
Run Code Online (Sandbox Code Playgroud)
小智 5
要缓存数据帧,请使用它。
import pyarrow as pa
def cache_df(alias,df):
pool = redis.ConnectionPool(host='host', port='port', db='db')
cur = redis.Redis(connection_pool=pool)
context = pa.default_serialization_context()
df_compressed = context.serialize(df).to_buffer().to_pybytes()
res = cur.set(alias,df_compressed)
if res == True:
print('df cached')
Run Code Online (Sandbox Code Playgroud)
要获取缓存的数据帧,请使用它。
def get_cached_df(alias):
pool = redis.ConnectionPool(host='host',port='port', db='db')
cur = redis.Redis(connection_pool=pool)
context = pa.default_serialization_context()
all_keys = [key.decode("utf-8") for key in cur.keys()]
if alias in all_keys:
result = cur.get(alias)
dataframe = pd.DataFrame.from_dict(context.deserialize(result))
return dataframe
return None
Run Code Online (Sandbox Code Playgroud)