Rob*_*boy 16 java swt image image-processing coordinates
我有一个缩放到适合的图像.从缩放的图像中,用户正在选择矩形.
然后我根据这个选择重新绘制:
gc.drawImage(imageDisplayed, minX, minY, width, height, imageDisplayed.getBounds().x, imageDisplayed.getBounds().y, imageDisplayed.getBounds().width, imageDisplayed.getBounds().height );
Run Code Online (Sandbox Code Playgroud)
所以现在我希望能够从缩放和缩放的图像中获得原始坐标.它是否正确?:
public Coordinate GetScaledXYCoordinate(int oldX, int oldY, int width, int height, int scaledWidth, int scaledHeight)
{
int newX = (int)(oldX * width)/scaledWidth;
int newY = (int)(oldY * height)/scaledHeight;
Coordinate retXY = new Coordinate(newX, newY);
return retXY;
}
public Coordinate GetZoomedXYCoordinate(int oldX, int oldY, int startX, int endX, int startY, int endY,
int width, int height,int scaledWidth, int scaledHeight)
{
// First get x,y after scaling
Coordinate xy = GetScaledXYCoordinate(oldX, oldY, width, height, scaledWidth, scaledHeight);
// Now get x.y after zooming
int minX = Math.min(startX, endX);
int minY = Math.min(startY, endY);
int maxX = Math.max(startX, endX);
int maxY = Math.max(startY, endY);
int rectWidth = maxX - minX;
int rectHeight = maxY - minY;
return GetScaledXYCoordinate(xy.getX(), xy.getY(), width, height, scaledWidth, scaledHeight);
}
Run Code Online (Sandbox Code Playgroud)
注意:我想要一种适用于许多缩放的算法,而不仅仅是一个缩放.
更新:
理想情况下,我想要一个采用屏幕点X,Y的函数,并返回原始图像X,Y.在缩放和缩放后,该函数仍将返回正确的X,Y
该方法selectionToOriginal应返回a Rectangle,其中最后一个缩放选择的位置和尺寸相对于原始图像.
它收到:
scaledDimensions:Point使用缩放图像的尺寸,这是执行缩放选择的位置levels:List连续缩放Rectangle选择; 在第一级中,您可以放置原始图像的尺寸此测试程序显示其使用尺寸为800x600且缩放尺寸为400x300的原始图像.将两个连续缩放选择应用于它.
import java.util.ArrayList;
import java.util.List;
import org.eclipse.swt.graphics.Point;
import org.eclipse.swt.graphics.Rectangle;
public class ScaleTest {
public static void main(String[] args) {
Point scaledDimensions = new Point(400, 300);
List<Rectangle> levels = new ArrayList<Rectangle>();
// first level is the original image dimension
levels.add(new Rectangle(0, 0, 800, 600));
// other levels are the zooming selection inside the scaled image
levels.add(new Rectangle(0, 0, 200, 150));
levels.add(new Rectangle(200, 150, 200, 150));
Rectangle selectionToOriginal = selectionToOriginal(scaledDimensions,
levels);
System.out.println(selectionToOriginal);
}
public static Rectangle selectionToOriginal(Point scaledDimensions,
List<Rectangle> levels) {
int numberOfLevels = levels.size();
double scaledX = 0;
double scaledY = 0;
// we will work with the size of the last selection
double scaledWidth = levels.get(numberOfLevels - 1).width;
double scaledHeight = levels.get(numberOfLevels - 1).height;
// start from the last selection to the first
for (int currentLevel = numberOfLevels - 1; currentLevel > 0; currentLevel--) {
// get the width of the level N - 1
double previousSelectionWidth = levels.get(currentLevel - 1).width;
// convert the width of 1 unit in level N to its width in level N - 1
double unitaryWidth = previousSelectionWidth / scaledDimensions.x;
// convert the X position in level N in its X position in level N - 1
scaledX = unitaryWidth * (levels.get(currentLevel).x + scaledX);
// convert the width in level N in its width in level N - 1
scaledWidth *= unitaryWidth;
// get the height of the level N - 1
double previousSelectionHeight = levels.get(currentLevel - 1).height;
// convert the height of 1 unit in level N to its height in level N - 1
double unitaryHeight = previousSelectionHeight / scaledDimensions.y;
// convert the Y position in level N in its Y position in level N - 1
scaledY = unitaryHeight * (levels.get(currentLevel).y + scaledY);
// convert the height in level N in its height in level N - 1
scaledHeight *= unitaryHeight;
}
return new Rectangle((int) scaledX, (int) scaledY, (int) scaledWidth,
(int) scaledHeight);
}
}
Run Code Online (Sandbox Code Playgroud)
程序返回Rectangle位置(200,150)和大小(200,150),图像显示情况:
笔记:
Coordinate类似于我在我的方法中使用的SWT类Point返回指令中的演员
return new Rectangle((int) scaledX, (int) scaledY, (int) scaledWidth,
(int) scaledHeight);
Run Code Online (Sandbox Code Playgroud)
将截断双精度值,Math.round如果您希望舍入值,请考虑使用
SWT有一个专门的类Transform用于进行坐标转换(我宁愿说转换,因为转换在这样的背景下只是一个特例,其他的变换是缩放,旋转和剪切).AWT有一个更方便的AffineTransform类,它没有绑定到图形子系统.
使用这些类之一简化了如下操作.一旦构造了在一个方向上映射坐标的变换对象(例如,源图像坐标到显示坐标),就可以轻松获得逆变换(从显示坐标返回到源图像坐标).为此使用invert()或createInverse()(后者,仅与AffineTransform)方法.
使用transform()方法执行实际坐标转换.在的情况下,SWT.Transform其标志是有点不方便,如果你需要变换一个点,但你可以很容易地将它包装在一个辅助功能.
出于您的目的,您只需要使用scale()和translate()方法来定义坐标转换.很可能你会想要根据源矩形和目标矩形来定义变换(类似于你对drawImage()方法的使用); 这个答案显示了如何做到这一点.然后,在缩放或以其他方式操纵图像的显示方式时,必须使变换对象保持最新.
UPDATE
@code_onkel使用这种方法提供了一个示例程序.
这是一个完整的工作示例,使用SWT放大图像,实现了Leon的答案背后的想法.使用仿射变换是在2D图形中使用单独坐标系绘制元素的默认方法.
Transform在正确的位置和比例绘制图片Transform来获取所选缩放区域的图像坐标.Transform以显示缩放区域.下面的课程如下:
Transform存储在paintTransform.zoomStart和中zoomEndsetVisibleImageAreaInScreenCoordinates从拖动的缩放矩形计算所选区域的图像坐标.Transform的计算方法是setVisibleImageAreaInImageCoordinates请注意,图像永远不会被缩放版本替换.它是使用paintTransform.这意味着图形上下文负责绘制缩放的图像.实际的绘画代码变得如此简单
ev.gc.setTransform(paintTransform);
ev.gc.drawImage(img, 0, 0);
Run Code Online (Sandbox Code Playgroud)
所有计算都是在鼠标事件触发的状态转换期间处理期间完成的,即处理程序中zoom()调用的方法mouseUp().
import java.io.InputStream;
import java.net.URL;
import org.eclipse.swt.events.MouseEvent;
import org.eclipse.swt.events.MouseListener;
import org.eclipse.swt.events.MouseMoveListener;
import org.eclipse.swt.events.PaintEvent;
import org.eclipse.swt.events.PaintListener;
import org.eclipse.swt.graphics.Color;
import org.eclipse.swt.graphics.GC;
import org.eclipse.swt.graphics.Image;
import org.eclipse.swt.graphics.ImageData;
import org.eclipse.swt.graphics.Point;
import org.eclipse.swt.graphics.RGB;
import org.eclipse.swt.graphics.Transform;
import org.eclipse.swt.widgets.Display;
import org.eclipse.swt.widgets.Shell;
public class Zoom implements PaintListener, MouseMoveListener, MouseListener {
private static final int MOUSE_DOWN = 1;
private static final int DRAGGING = 2;
private static final int NOT_DRAGGING = 3;
int dragState = NOT_DRAGGING;
Point zoomStart;
Point zoomEnd;
ImageData imgData;
Image img;
Transform paintTransform;
Shell shell;
Color rectColor;
public Zoom(ImageData image, Shell shell) {
imgData = image;
img = new Image(shell.getDisplay(), image);
this.shell = shell;
rectColor = new Color(shell.getDisplay(), new RGB(255, 255, 255));
}
void zoom() {
int x0 = Math.min(zoomStart.x, zoomEnd.x);
int x1 = Math.max(zoomStart.x, zoomEnd.x);
int y0 = Math.min(zoomStart.y, zoomEnd.y);
int y1 = Math.max(zoomStart.y, zoomEnd.y);
setVisibleImageAreaInScreenCoordinates(x0, y0, x1, y1);
}
void setVisibleImageAreaInImageCoordinates(float x0, float y0,
float x1, float y1) {
Point sz = shell.getSize();
double width = x1 - x0;
double height = y1 - y0;
double sx = (double) sz.x / (double) width;
double sy = (double) sz.y / (double) height;
float scale = (float) Math.min(sx, sy);
// compute offset to center selected rectangle in available area
double ox = 0.5 * (sz.x - scale * width);
double oy = 0.5 * (sz.y - scale * height);
paintTransform.identity();
paintTransform.translate((float) ox, (float) oy);
paintTransform.scale(scale, scale);
paintTransform.translate(-x0, -y0);
}
void setVisibleImageAreaInScreenCoordinates(int x0, int y0,
int x1, int y1) {
Transform inv = invertPaintTransform();
// points in screen coordinates
// to be transformed to image coordinates
// (top-left and bottom-right corner of selection)
float[] points = { x0, y0, x1, y1 };
// actually get image coordinates
// (in-place operation on points array)
inv.transform(points);
inv.dispose();
// extract image coordinates from array
float ix0 = points[0];
float iy0 = points[1];
float ix1 = points[2];
float iy1 = points[3];
setVisibleImageAreaInImageCoordinates(ix0, iy0, ix1, iy1);
}
Transform invertPaintTransform() {
// clone paintTransform
float[] elems = new float[6];
paintTransform.getElements(elems);
Transform inv = new Transform(shell.getDisplay());
inv.setElements(elems[0], elems[1], elems[2],
elems[3], elems[4], elems[5]);
// invert clone
inv.invert();
return inv;
}
void fitImage() {
Point sz = shell.getSize();
double sx = (double) sz.x / (double) imgData.width;
double sy = (double) sz.y / (double) imgData.height;
float scale = (float) Math.min(sx, sy);
paintTransform.identity();
paintTransform.translate(sz.x * 0.5f, sz.y * 0.5f);
paintTransform.scale(scale, scale);
paintTransform.translate(-imgData.width*0.5f, -imgData.height*0.5f);
}
@Override
public void paintControl(PaintEvent ev) {
if (paintTransform == null) {
paintTransform = new Transform(shell.getDisplay());
fitImage();
}
ev.gc.setTransform(paintTransform);
ev.gc.drawImage(img, 0, 0);
if (dragState == DRAGGING) {
drawZoomRect(ev.gc);
}
}
void drawZoomRect(GC gc) {
int x0 = Math.min(zoomStart.x, zoomEnd.x);
int x1 = Math.max(zoomStart.x, zoomEnd.x);
int y0 = Math.min(zoomStart.y, zoomEnd.y);
int y1 = Math.max(zoomStart.y, zoomEnd.y);
gc.setTransform(null);
gc.setAlpha(0x80);
gc.setForeground(rectColor);
gc.fillRectangle(x0, y0, x1 - x0, y1 - y0);
}
public static void main(String[] args) throws Exception {
URL url = new URL(
"https://upload.wikimedia.org/wikipedia/commons/thumb/" +
"6/62/Billy_Zoom.jpg/800px-Billy_Zoom.jpg");
InputStream input = url.openStream();
ImageData img;
try {
img = new ImageData(input);
} finally {
input.close();
}
Display display = new Display();
Shell shell = new Shell(display);
shell.setSize(800, 600);
Zoom zoom = new Zoom(img, shell);
shell.open();
shell.addPaintListener(zoom);
shell.addMouseMoveListener(zoom);
shell.addMouseListener(zoom);
while (!shell.isDisposed()) {
if (!display.readAndDispatch())
display.sleep();
}
display.dispose();
}
@Override
public void mouseDoubleClick(MouseEvent e) {
}
@Override
public void mouseDown(MouseEvent e) {
if (e.button != 1) {
return;
}
zoomStart = new Point(e.x, e.y);
dragState = MOUSE_DOWN;
}
@Override
public void mouseUp(MouseEvent e) {
if (e.button != 1) {
return;
}
if (dragState == DRAGGING) {
zoomEnd = new Point(e.x, e.y);
}
dragState = NOT_DRAGGING;
zoom();
shell.redraw();
}
@Override
public void mouseMove(MouseEvent e) {
if (dragState == NOT_DRAGGING) {
return;
}
if (e.x == zoomStart.x && e.y == zoomStart.y) {
dragState = MOUSE_DOWN;
} else {
dragState = DRAGGING;
zoomEnd = new Point(e.x, e.y);
}
shell.redraw();
}
}
Run Code Online (Sandbox Code Playgroud)
调整窗口大小时,当前不会更改转换.这可以通过与缩放相同的方式实现:使用旧窗口大小计算先前可见的图像坐标,使用新窗口大小计算新变换.