Hos*_*ein 22 matlab machine-learning svm
我需要一个某种描述性的例子,展示如何对两类数据进行10倍SVM分类.在MATLAB文档中只有一个例子,但它不是10倍.有人能帮我吗?
Amr*_*mro 43
这里有一个完整的例子,使用从生物信息工具箱以下功能:svmtrain去,SVMCLASSIFY,CLASSPERF,CROSSVALIND.
load fisheriris %# load iris dataset
groups = ismember(species,'setosa'); %# create a two-class problem
%# number of cross-validation folds:
%# If you have 50 samples, divide them into 10 groups of 5 samples each,
%# then train with 9 groups (45 samples) and test with 1 group (5 samples).
%# This is repeated ten times, with each group used exactly once as a test set.
%# Finally the 10 results from the folds are averaged to produce a single
%# performance estimation.
k=10;
cvFolds = crossvalind('Kfold', groups, k); %# get indices of 10-fold CV
cp = classperf(groups); %# init performance tracker
for i = 1:k %# for each fold
testIdx = (cvFolds == i); %# get indices of test instances
trainIdx = ~testIdx; %# get indices training instances
%# train an SVM model over training instances
svmModel = svmtrain(meas(trainIdx,:), groups(trainIdx), ...
'Autoscale',true, 'Showplot',false, 'Method','QP', ...
'BoxConstraint',2e-1, 'Kernel_Function','rbf', 'RBF_Sigma',1);
%# test using test instances
pred = svmclassify(svmModel, meas(testIdx,:), 'Showplot',false);
%# evaluate and update performance object
cp = classperf(cp, pred, testIdx);
end
%# get accuracy
cp.CorrectRate
%# get confusion matrix
%# columns:actual, rows:predicted, last-row: unclassified instances
cp.CountingMatrix
Run Code Online (Sandbox Code Playgroud)
与输出:
ans =
0.99333
ans =
100 1
0 49
0 0
Run Code Online (Sandbox Code Playgroud)
99.33%只有一个'setosa'实例被错误归类为'non-setosa',我们获得了准确性
更新:SVM功能已移至R2013a中的统计工具箱