use*_*827 22 python numpy percentile weighted
有没有办法使用numpy.percentile函数来计算加权百分位数?或者是否有人知道替代python函数来计算加权百分位数?
谢谢!
All*_*leo 37
这是我正在使用的代码.它不是最佳的(我无法写入numpy),但仍然比接受的解决方案更快,更可靠
def weighted_quantile(values, quantiles, sample_weight=None,
values_sorted=False, old_style=False):
""" Very close to numpy.percentile, but supports weights.
NOTE: quantiles should be in [0, 1]!
:param values: numpy.array with data
:param quantiles: array-like with many quantiles needed
:param sample_weight: array-like of the same length as `array`
:param values_sorted: bool, if True, then will avoid sorting of
initial array
:param old_style: if True, will correct output to be consistent
with numpy.percentile.
:return: numpy.array with computed quantiles.
"""
values = np.array(values)
quantiles = np.array(quantiles)
if sample_weight is None:
sample_weight = np.ones(len(values))
sample_weight = np.array(sample_weight)
assert np.all(quantiles >= 0) and np.all(quantiles <= 1), \
'quantiles should be in [0, 1]'
if not values_sorted:
sorter = np.argsort(values)
values = values[sorter]
sample_weight = sample_weight[sorter]
weighted_quantiles = np.cumsum(sample_weight) - 0.5 * sample_weight
if old_style:
# To be convenient with numpy.percentile
weighted_quantiles -= weighted_quantiles[0]
weighted_quantiles /= weighted_quantiles[-1]
else:
weighted_quantiles /= np.sum(sample_weight)
return np.interp(quantiles, weighted_quantiles, values)
Run Code Online (Sandbox Code Playgroud)
例子:
weighted_quantile([1,2,9,3.2,4],[0.0,0.5,1.])
数组([1.,3.2,9.])
weighted_quantile([1,2,9,3.2,4],[0.0,0.5,1],sample_weight = [2,1,2,4,1])
数组([1.,3.2,9.])
eus*_*iro 15
使用此参考进行加权百分位数方法更清晰、更简单。
import numpy as np
def weighted_percentile(data, weights, perc):
"""
perc : percentile in [0-1]!
"""
ix = np.argsort(data)
data = data[ix] # sort data
weights = weights[ix] # sort weights
cdf = (np.cumsum(weights) - 0.5 * weights) / np.sum(weights) # 'like' a CDF function
return np.interp(perc, cdf, data)
Run Code Online (Sandbox Code Playgroud)
Sam*_* A. 15
这似乎现在已在 statsmodels 中实现
from statsmodels.stats.weightstats import DescrStatsW
wq = DescrStatsW(data=np.array([1, 2, 9, 3.2, 4]), weights=np.array([0.0, 0.5, 1.0, 0.3, 0.5]))
wq.quantile(probs=np.array([0.1, 0.9]), return_pandas=False)
# array([2., 9.])
Run Code Online (Sandbox Code Playgroud)
DescrStatsW 对象还实现了其他方法,例如加权平均值等。https://www.statsmodels.org/stable/ generated/statsmodels.stats.weightstats.DescrStatsW.html
小智 9
快速解决方案,首先排序然后插值:
def weighted_percentile(data, percents, weights=None):
''' percents in units of 1%
weights specifies the frequency (count) of data.
'''
if weights is None:
return np.percentile(data, percents)
ind=np.argsort(data)
d=data[ind]
w=weights[ind]
p=1.*w.cumsum()/w.sum()*100
y=np.interp(percents, p, d)
return y
Run Code Online (Sandbox Code Playgroud)
我不知道加权百分位是什么意思,但是从@Joan Smith的回答来看,你似乎只需要重复每一个元素ar,你可以使用numpy.repeat():
import numpy as np
np.repeat([1,2,3], [4,5,6])
Run Code Online (Sandbox Code Playgroud)
结果是:
array([1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3])
Run Code Online (Sandbox Code Playgroud)
为额外的(非原创)答案道歉(没有足够的代表对@nayyarv的评论).他的解决方案对我有用(即它复制了默认行为np.percentage),但我认为你可以通过原始np.percentage编写方式的线索来消除for循环.
def weighted_percentile(a, q=np.array([75, 25]), w=None):
"""
Calculates percentiles associated with a (possibly weighted) array
Parameters
----------
a : array-like
The input array from which to calculate percents
q : array-like
The percentiles to calculate (0.0 - 100.0)
w : array-like, optional
The weights to assign to values of a. Equal weighting if None
is specified
Returns
-------
values : np.array
The values associated with the specified percentiles.
"""
# Standardize and sort based on values in a
q = np.array(q) / 100.0
if w is None:
w = np.ones(a.size)
idx = np.argsort(a)
a_sort = a[idx]
w_sort = w[idx]
# Get the cumulative sum of weights
ecdf = np.cumsum(w_sort)
# Find the percentile index positions associated with the percentiles
p = q * (w.sum() - 1)
# Find the bounding indices (both low and high)
idx_low = np.searchsorted(ecdf, p, side='right')
idx_high = np.searchsorted(ecdf, p + 1, side='right')
idx_high[idx_high > ecdf.size - 1] = ecdf.size - 1
# Calculate the weights
weights_high = p - np.floor(p)
weights_low = 1.0 - weights_high
# Extract the low/high indexes and multiply by the corresponding weights
x1 = np.take(a_sort, idx_low) * weights_low
x2 = np.take(a_sort, idx_high) * weights_high
# Return the average
return np.add(x1, x2)
# Sample data
a = np.array([1.0, 2.0, 9.0, 3.2, 4.0], dtype=np.float)
w = np.array([2.0, 1.0, 3.0, 4.0, 1.0], dtype=np.float)
# Make an unweighted "copy" of a for testing
a2 = np.repeat(a, w.astype(np.int))
# Tests with different percentiles chosen
q1 = np.linspace(0.0, 100.0, 11)
q2 = np.linspace(5.0, 95.0, 10)
q3 = np.linspace(4.0, 94.0, 10)
for q in (q1, q2, q3):
assert np.all(weighted_percentile(a, q, w) == np.percentile(a2, q))
Run Code Online (Sandbox Code Playgroud)
小智 1
不幸的是,numpy没有内置的加权函数,但是,你可以随时把东西放在一起.
def weight_array(ar, weights):
zipped = zip(ar, weights)
weighted = []
for a, w in zipped:
for j in range(w):
weighted.append(a)
return weighted
np.percentile(weight_array(ar, weights), 25)
Run Code Online (Sandbox Code Playgroud)