可以使用python 3从networkx获取分层图吗?

Nic*_*r66 21 python networkx pygraphviz

我正在尝试显示我的类层次结构的树形图,我networkx.将它全部正确绘制,并且显示正常.但是作为一个带有交叉边的圆形图,它是一个纯粹的层次结构,似乎我应该能够将它显示为树.

我已经广泛搜索了这个,并且提供的每个解决方案都涉及使用pygraphviz......但是PyGraphviz不能使用Python 3(来自pygraphviz网站的文档).

有没有人能够在Python 3中获得树形图显示?

Joe*_*oel 38

编辑(2019年1月19日)我已经更新了代码以使其更加健壮:它现在适用于有向和无向图,无需任何修改,不再需要用户指定根,并且它在运行之前测试图是树(没有测试它会有无限递归 - 请参阅user2479115的答案,以处理非树的方法).

编辑(2018年8月27日)如果你想创建一个图表,节点在根节点周围显示为环,底部的代码显示了一个简单的修改来执行此操作

编辑(2017年9月17日)我认为OP所具有的pygraphviz的问题现在应该修复.所以pygraphviz可能是我在下面得到的更好的解决方案.


这是一个简单的递归程序来定义位置.递归发生在_hierarchy_pos,被称为hierarchy_pos.主要作用hierarcy_pos是进行一些测试,以确保图形在进入递归之前是合适的:

import networkx as nx
import random


def hierarchy_pos(G, root=None, width=1., vert_gap = 0.2, vert_loc = 0, xcenter = 0.5):

    '''
    From Joel's answer at https://stackoverflow.com/a/29597209/2966723.  
    Licensed under Creative Commons Attribution-Share Alike 

    If the graph is a tree this will return the positions to plot this in a 
    hierarchical layout.

    G: the graph (must be a tree)

    root: the root node of current branch 
    - if the tree is directed and this is not given, 
      the root will be found and used
    - if the tree is directed and this is given, then 
      the positions will be just for the descendants of this node.
    - if the tree is undirected and not given, 
      then a random choice will be used.

    width: horizontal space allocated for this branch - avoids overlap with other branches

    vert_gap: gap between levels of hierarchy

    vert_loc: vertical location of root

    xcenter: horizontal location of root
    '''
    if not nx.is_tree(G):
        raise TypeError('cannot use hierarchy_pos on a graph that is not a tree')

    if root is None:
        if isinstance(G, nx.DiGraph):
            root = next(iter(nx.topological_sort(G)))  #allows back compatibility with nx version 1.11
        else:
            root = random.choice(list(G.nodes))

    def _hierarchy_pos(G, root, width=1., vert_gap = 0.2, vert_loc = 0, xcenter = 0.5, pos = None, parent = None):
        '''
        see hierarchy_pos docstring for most arguments

        pos: a dict saying where all nodes go if they have been assigned
        parent: parent of this branch. - only affects it if non-directed

        '''

        if pos is None:
            pos = {root:(xcenter,vert_loc)}
        else:
            pos[root] = (xcenter, vert_loc)
        children = list(G.neighbors(root))
        if not isinstance(G, nx.DiGraph) and parent is not None:
            children.remove(parent)  
        if len(children)!=0:
            dx = width/len(children) 
            nextx = xcenter - width/2 - dx/2
            for child in children:
                nextx += dx
                pos = _hierarchy_pos(G,child, width = dx, vert_gap = vert_gap, 
                                    vert_loc = vert_loc-vert_gap, xcenter=nextx,
                                    pos=pos, parent = root)
        return pos


    return _hierarchy_pos(G, root, width, vert_gap, vert_loc, xcenter)
Run Code Online (Sandbox Code Playgroud)

和一个示例用法:

import matplotlib.pyplot as plt
import networkx as nx
G=nx.Graph()
G.add_edges_from([(1,2), (1,3), (1,4), (2,5), (2,6), (2,7), (3,8), (3,9), (4,10),
                  (5,11), (5,12), (6,13)])
pos = hierarchy_pos(G,1)    
nx.draw(G, pos=pos, with_labels=True)
plt.savefig('hierarchy.png')
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

理想情况下,这应根据物体下方的宽度重新调整水平间距.我现在不是在尝试.

径向扩张

假设您希望情节看起来像:

在此输入图像描述

这是代码:

pos = hierarchy_pos(G, 0, width = 2*math.pi, xcenter=0)
new_pos = {u:(r*math.cos(theta),r*math.sin(theta)) for u, (theta, r) in pos.items()}
nx.draw(G, pos=new_pos, node_size = 50)
nx.draw_networkx_nodes(G, pos=new_pos, nodelist = [0], node_color = 'blue', node_size = 200)
Run Code Online (Sandbox Code Playgroud)

编辑 - 感谢Deepak Saini注意到曾经出现在有向图中的错误

  • 需要`neighbors = list(G.neighbors(root))`for python 3. (3认同)

bur*_*bum 10

这是大树的解决方案.它是对Joel递归方法的修改,它在每个级别均匀地分隔节点.

def hierarchy_pos(G, root, levels=None, width=1., height=1.):
    '''If there is a cycle that is reachable from root, then this will see infinite recursion.
       G: the graph
       root: the root node
       levels: a dictionary
               key: level number (starting from 0)
               value: number of nodes in this level
       width: horizontal space allocated for drawing
       height: vertical space allocated for drawing'''
    TOTAL = "total"
    CURRENT = "current"
    def make_levels(levels, node=root, currentLevel=0, parent=None):
        """Compute the number of nodes for each level
        """
        if not currentLevel in levels:
            levels[currentLevel] = {TOTAL : 0, CURRENT : 0}
        levels[currentLevel][TOTAL] += 1
        neighbors = G.neighbors(node)
        for neighbor in neighbors:
            if not neighbor == parent:
                levels =  make_levels(levels, neighbor, currentLevel + 1, node)
        return levels

    def make_pos(pos, node=root, currentLevel=0, parent=None, vert_loc=0):
        dx = 1/levels[currentLevel][TOTAL]
        left = dx/2
        pos[node] = ((left + dx*levels[currentLevel][CURRENT])*width, vert_loc)
        levels[currentLevel][CURRENT] += 1
        neighbors = G.neighbors(node)
        for neighbor in neighbors:
            if not neighbor == parent:
                pos = make_pos(pos, neighbor, currentLevel + 1, node, vert_loc-vert_gap)
        return pos
    if levels is None:
        levels = make_levels({})
    else:
        levels = {l:{TOTAL: levels[l], CURRENT:0} for l in levels}
    vert_gap = height / (max([l for l in levels])+1)
    return make_pos({})
Run Code Online (Sandbox Code Playgroud)

乔尔的例子如下: 在此输入图像描述

这是一个更复杂的图形(使用plotly渲染):在此输入图像描述


小智 8

我略微修改,以便它不会无限递归.

import networkx as nx

def hierarchy_pos(G, root, width=1., vert_gap = 0.2, vert_loc = 0, xcenter = 0.5 ):
    '''If there is a cycle that is reachable from root, then result will not be a hierarchy.

       G: the graph
       root: the root node of current branch
       width: horizontal space allocated for this branch - avoids overlap with other branches
       vert_gap: gap between levels of hierarchy
       vert_loc: vertical location of root
       xcenter: horizontal location of root
    '''

    def h_recur(G, root, width=1., vert_gap = 0.2, vert_loc = 0, xcenter = 0.5, 
                  pos = None, parent = None, parsed = [] ):
        if(root not in parsed):
            parsed.append(root)
            if pos == None:
                pos = {root:(xcenter,vert_loc)}
            else:
                pos[root] = (xcenter, vert_loc)
            neighbors = G.neighbors(root)
            if parent != None:
                neighbors.remove(parent)
            if len(neighbors)!=0:
                dx = width/len(neighbors) 
                nextx = xcenter - width/2 - dx/2
                for neighbor in neighbors:
                    nextx += dx
                    pos = h_recur(G,neighbor, width = dx, vert_gap = vert_gap, 
                                        vert_loc = vert_loc-vert_gap, xcenter=nextx, pos=pos, 
                                        parent = root, parsed = parsed)
        return pos

    return h_recur(G, root, width=1., vert_gap = 0.2, vert_loc = 0, xcenter = 0.5)
Run Code Online (Sandbox Code Playgroud)


Wes*_*pse 6

在没有PyGraphviz的情况下,在Python 2或3中获得漂亮的树形图显示的最简单方法是使用PyDot(https://pypi.python.org/pypi/pydot).PyGraphviz为整个Graphviz提供了一个接口,而PyDot只为Graphviz的Dot工具提供了一个接口,如果你所追求的是一个分层图形/树,那么它就是你唯一需要的工具.如果要在NetworkX而不是PyDot中创建图形,可以使用NetworkX导出PyDot图形,如下所示:

import networkx as nx

g=nx.DiGraph()
g.add_edges_from([(1,2), (1,3), (1,4), (2,5), (2,6), (2,7), (3,8), (3,9),
                  (4,10), (5,11), (5,12), (6,13)])
p=nx.drawing.nx_pydot.to_pydot(g)
p.write_png('example.png')
Run Code Online (Sandbox Code Playgroud)

请注意,需要安装Graphviz和PyDot才能使上述内容正常工作.

在此输入图像描述

警告:使用PyDot绘制带有从NetworkX导出的节点属性词典的图形时遇到问题 - 有时字典似乎导出字符串中缺少引号,这会导致write方法崩溃.这可以通过省略字典来避免.


phl*_*xyr 5

我使用grandalf作为仅使用 python 的解决方案,既不使用 graphviz 也不使用 pygraphviz。

此外,这种类型的可视化称为分层图形绘制杉山式图形绘制,它可以显示多种图形,包括非树。

import networkx as nx
import grandalf
from grandalf.layouts import SugiyamaLayout

G = nx.DiGraph()

# Build your networkx graph here
[G.add_node(data) for data in range(10)]
X = [(0,1),(0,2),(1,3),(2,3),(1,4),(4,5),(5,6),(3,6),(3,7),(6,8),(7,8),(8,9),(5,9)]
for x in X:
    G.add_edge(*x)

g = grandalf.utils.convert_nextworkx_graph_to_grandalf(G)  # undocumented function

class defaultview(object): # see README of grandalf's github
    w, h = 10, 10


for v in g.C[0].sV:
    v.view = defaultview()

sug = SugiyamaLayout(g.C[0])
sug.init_all() # roots=[V[0]])
sug.draw()
# This is a bit of a misnomer, as grandalf doesn't actually come with any visualization methods.
# This method instead calculates positions

poses = {v.data: (v.view.xy[0], v.view.xy[1]) for v in g.C[0].sV} # Extracts the positions
nx.draw(G, pos=poses, with_labels=True)
import matplotlib.pyplot as plt
plt.show()
Run Code Online (Sandbox Code Playgroud)


Jag*_*r48 5

networkx文档中对此问题有一个唯一的解决方案。请参阅https://networkx.org/documentation/stable/auto_examples/graph/plot_dag_layout.html

下面是该案例中出现的代码的稍微修改版本,专门针对从左到右流动的 DAG 到从上到下掉落的树的情况。

import networkx as nx
import matplotlib.pyplot as plt


G = nx.DiGraph(
    [
        ("f", "a"),
        ("a", "b"),
        ("b", "d"),
        ("d", "e"),
        ("f", "c"),
        ("f", "g"),
        ("h", "f"),
    ]
)

for layer, nodes in enumerate(reversed(tuple(nx.topological_generations(G)))):
    # `multipartite_layout` expects the layer as a node attribute, so add the
    # numeric layer value as a node attribute
    for node in nodes:
        G.nodes[node]["layer"] = layer

# Compute the multipartite_layout using the "layer" node attribute
pos = nx.multipartite_layout(G, subset_key="layer", align='horizontal')

fig, ax = plt.subplots()
nx.draw_networkx(G, pos=pos, ax=ax)
ax.set_title("Tree layout in topological order")
fig.tight_layout()
plt.show()

Run Code Online (Sandbox Code Playgroud)

这会生成: 在此输入图像描述

我更喜欢b, d, 和e直接低于a,但这至少接近你想要的,没有额外的依赖。