相当于Rcpp中的'which'函数

uda*_*day 3 r rcpp

我是C++和Rcpp的新手.假设,我有一个向量

t1<-c(1,2,NA,NA,3,4,1,NA,5)
Run Code Online (Sandbox Code Playgroud)

我想得到一个t1元素的索引NA.我可以写:

NumericVector retIdxNA(NumericVector x) {

    // Step 1: get the positions of NA in the vector
    LogicalVector y=is_na(x);

    // Step 2: count the number of NA
    int Cnt=0;
    for (int i=0;i<x.size();i++) {
       if (y[i]) {
         Cnt++;
       }
    }

    // Step 3: create an output matrix whose size is same as that of NA
    // and return the answer
    NumericVector retIdx(Cnt);
    int Cnt1=0;
    for (int i=0;i<x.size();i++) {
       if (y[i]) {
          retIdx[Cnt1]=i+1;
          Cnt1++;
       }
    }
    return retIdx;
}
Run Code Online (Sandbox Code Playgroud)

然后我明白了

retIdxNA(t1)
[1] 3 4 8
Run Code Online (Sandbox Code Playgroud)

我在想:

(i)whichRcpp中是否有任何等价物?

(ii)有没有办法让上述功能更短/更清脆?特别是,有没有简单的方法来结合上面的步骤1,2,3?

Dir*_*tel 12

最新版本的RcppArmadillo具有识别有限值和非有限值的指数的功能.

所以这段代码

#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]
arma::uvec whichNA(arma::vec x) {
  return arma::find_nonfinite(x);
}

/*** R
t1 <- c(1,2,NA,NA,3,4,1,NA,5)
whichNA(t1)
*/
Run Code Online (Sandbox Code Playgroud)

得到你想要的答案(在C/C++中逐个模块,因为它们从零开始):

R> sourceCpp("/tmp/uday.cpp")

R> t1 <- c(1,2,NA,NA,3,4,1,NA,5)

R> whichNA(t1)
     [,1]
[1,]    2
[2,]    3
[3,]    7
R> 
Run Code Online (Sandbox Code Playgroud)

如果您首先创建序列到子集,Rcpp也可以这样做:

// [[Rcpp::export]]
Rcpp::IntegerVector which2(Rcpp::NumericVector x) {
  Rcpp::IntegerVector v = Rcpp::seq(0, x.size()-1);
  return v[Rcpp::is_na(x)];
}
Run Code Online (Sandbox Code Playgroud)

添加到上面的代码产生:

R> which2(t1)
[1] 2 3 7
R> 
Run Code Online (Sandbox Code Playgroud)

逻辑子集在Rcpp中也有些新功能.


G. *_*eck 5

尝试这个:

#include <Rcpp.h> 
using namespace Rcpp; 

// [[Rcpp::export]]
IntegerVector which4( NumericVector x) {

    int nx = x.size();
    std::vector<int> y;
    y.reserve(nx);

    for(int i = 0; i < nx; i++) {
        if (R_IsNA(x[i])) y.push_back(i+1);
    }

    return wrap(y);
}
Run Code Online (Sandbox Code Playgroud)

我们可以在R中像这样运行:

> which4(t1)
[1] 3 4 8
Run Code Online (Sandbox Code Playgroud)

性能

请注意,我们已经更改了上述解决方案,为输出向量保留了空间。替换which3为:

// [[Rcpp::export]]
IntegerVector which3( NumericVector x) {
    int nx = x.size();
    IntegerVector y;
    for(int i = 0; i < nx; i++) {
        // if (internal::Rcpp_IsNA(x[i])) y.push_back(i+1);
        if (R_IsNA(x[i])) y.push_back(i+1);
    }
    return y;
}
Run Code Online (Sandbox Code Playgroud)

那么,在9个元素长的向量上的性能which4最快的如下:

> library(rbenchmark)
> benchmark(retIdxNA(t1), whichNA(t1), which2(t1), which3(t1), which4(t1), 
+    replications = 10000, order = "relative")[1:4]
          test replications elapsed relative
5   which4(t1)        10000    0.14    1.000
4   which3(t1)        10000    0.16    1.143
1 retIdxNA(t1)        10000    0.17    1.214
2  whichNA(t1)        10000    0.17    1.214
3   which2(t1)        10000    0.25    1.786
Run Code Online (Sandbox Code Playgroud)

对于9000个矢量元素重复此操作,Armadillo解决方案的速度要比其他解决方案快很多。在这里which3which4除了不为输出向量保留空间之外,其他都是相同的),最糟糕的which4是第二位。

> tt <- rep(t1, 1000)
> benchmark(retIdxNA(tt), whichNA(tt), which2(tt), which3(tt), which4(tt), 
+   replications = 1000, order = "relative")[1:4]
          test replications elapsed relative
2  whichNA(tt)         1000    0.09    1.000
5   which4(tt)         1000    0.79    8.778
3   which2(tt)         1000    1.03   11.444
1 retIdxNA(tt)         1000    1.19   13.222
4   which3(tt)         1000   23.58  262.000
Run Code Online (Sandbox Code Playgroud)