是什么决定了Java ForkJoinPool创建的线程数?

Hol*_*ine 42 java parallel-processing fork-join threadpool

据我所知ForkJoinPool,该池创建了固定数量的线程(默认值:核心数),并且永远不会创建更多线程(除非应用程序通过使用表明需要这些线程managedBlock).

但是,使用ForkJoinPool.getPoolSize()我发现在创建30,000个任务(RecursiveAction)的程序中,ForkJoinPool执行这些任务平均使用700个线程(每次创建任务时计算的线程数).任务不做I/O,而是纯粹的计算; 唯一的任务间同步是调用ForkJoinTask.join()和访问AtomicBooleans,即没有线程阻塞操作.

因为join()不会像我理解的那样阻塞调用线程,所以没有理由为什么池中的任何线程都应该阻塞,所以(我曾经假设)应该没有理由创建任何进一步的线程(这显然发生了) .

那么,为什么要ForkJoinPool创建这么多线程呢?哪些因素决定了创建的线程数?

我曾希望这个问题可以在不发布代码的情况下得到解答,但在此请求.此代码摘自四倍大小的程序,简化为必要部分; 它不会按原样编译.如果需要,我当然也可以发布完整的程序.

程序使用深度优先搜索在迷宫中搜索从给定起点到给定终点的路径.保证存在解决方案.主要逻辑在以下compute()方法中SolverTask:A RecursiveAction从某个给定点开始,并继续从当前点可到达的所有邻居点.它不是SolverTask在每个分支点创建一个新的(这将创建太多的任务),而是将除了一个之外的所有邻居推送到后退堆栈以便稍后处理,并继续只有一个邻居没有被推送到堆栈.一旦它以这种方式达到死胡同,就会弹出最近推到回溯堆栈的点,并从那里继续搜索(相应地减少从taks起点构建的路径).一旦任务发现其回溯堆栈大于某个阈值,就会创建一个新任务; 从那时起,任务在继续从其回溯堆栈中弹出直到耗尽时,在到达分支点时不会将任何其他点推到其堆栈,而是为每个这样的点创建一个新任务.因此,可以使用堆栈限制阈值来调整任务的大小.

我上面引用的数字("30,000个任务,平均700个线程")来自于搜索5000x5000个单元格的迷宫.所以,这是基本代码:

class SolverTask extends RecursiveTask<ArrayDeque<Point>> {
// Once the backtrack stack has reached this size, the current task
// will never add another cell to it, but create a new task for each
// newly discovered branch:
private static final int MAX_BACKTRACK_CELLS = 100*1000;

/**
 * @return Tries to compute a path through the maze from local start to end
 * and returns that (or null if no such path found)
 */
@Override
public ArrayDeque<Point>  compute() {
    // Is this task still accepting new branches for processing on its own,
    // or will it create new tasks to handle those?
    boolean stillAcceptingNewBranches = true;
    Point current = localStart;
    ArrayDeque<Point> pathFromLocalStart = new ArrayDeque<Point>();  // Path from localStart to (including) current
    ArrayDeque<PointAndDirection> backtrackStack = new ArrayDeque<PointAndDirection>();
    // Used as a stack: Branches not yet taken; solver will backtrack to these branching points later

    Direction[] allDirections = Direction.values();

    while (!current.equals(end)) {
        pathFromLocalStart.addLast(current);
        // Collect current's unvisited neighbors in random order: 
        ArrayDeque<PointAndDirection> neighborsToVisit = new ArrayDeque<PointAndDirection>(allDirections.length);  
        for (Direction directionToNeighbor: allDirections) {
            Point neighbor = current.getNeighbor(directionToNeighbor);

            // contains() and hasPassage() are read-only methods and thus need no synchronization
            if (maze.contains(neighbor) && maze.hasPassage(current, neighbor) && maze.visit(neighbor))
                neighborsToVisit.add(new PointAndDirection(neighbor, directionToNeighbor.opposite));
        }
        // Process unvisited neighbors
        if (neighborsToVisit.size() == 1) {
            // Current node is no branch: Continue with that neighbor
            current = neighborsToVisit.getFirst().getPoint();
            continue;
        }
        if (neighborsToVisit.size() >= 2) {
            // Current node is a branch
            if (stillAcceptingNewBranches) {
                current = neighborsToVisit.removeLast().getPoint();
                // Push all neighbors except one on the backtrack stack for later processing
                for(PointAndDirection neighborAndDirection: neighborsToVisit) 
                    backtrackStack.push(neighborAndDirection);
                if (backtrackStack.size() > MAX_BACKTRACK_CELLS)
                    stillAcceptingNewBranches = false;
                // Continue with the one neighbor that was not pushed onto the backtrack stack
                continue;
            } else {
                // Current node is a branch point, but this task does not accept new branches any more: 
                // Create new task for each neighbor to visit and wait for the end of those tasks
                SolverTask[] subTasks = new SolverTask[neighborsToVisit.size()];
                int t = 0;
                for(PointAndDirection neighborAndDirection: neighborsToVisit)  {
                    SolverTask task = new SolverTask(neighborAndDirection.getPoint(), end, maze);
                    task.fork();
                    subTasks[t++] = task;
                }
                for (SolverTask task: subTasks) {
                    ArrayDeque<Point> subTaskResult = null;
                    try {
                        subTaskResult = task.join();
                    } catch (CancellationException e) {
                        // Nothing to do here: Another task has found the solution and cancelled all other tasks
                    }
                    catch (Exception e) {
                        e.printStackTrace();
                    }
                    if (subTaskResult != null) { // subtask found solution
                        pathFromLocalStart.addAll(subTaskResult);
                        // No need to wait for the other subtasks once a solution has been found
                        return pathFromLocalStart;
                    }
                } // for subTasks
            } // else (not accepting any more branches) 
        } // if (current node is a branch)
        // Current node is dead end or all its neighbors lead to dead ends:
        // Continue with a node from the backtracking stack, if any is left:
        if (backtrackStack.isEmpty()) {
            return null; // No more backtracking avaible: No solution exists => end of this task
        }
        // Backtrack: Continue with cell saved at latest branching point:
        PointAndDirection pd = backtrackStack.pop();
        current = pd.getPoint();
        Point branchingPoint = current.getNeighbor(pd.getDirectionToBranchingPoint());
        // DEBUG System.out.println("Backtracking to " +  branchingPoint);
        // Remove the dead end from the top of pathSoFar, i.e. all cells after branchingPoint:
        while (!pathFromLocalStart.peekLast().equals(branchingPoint)) {
            // DEBUG System.out.println("    Going back before " + pathSoFar.peekLast());
            pathFromLocalStart.removeLast();
        }
        // continue while loop with newly popped current
    } // while (current ...
    if (!current.equals(end)) {         
        // this task was interrupted by another one that already found the solution 
        // and should end now therefore:
        return null;
    } else {
        // Found the solution path:
        pathFromLocalStart.addLast(current);
        return pathFromLocalStart;
    }
} // compute()
} // class SolverTask

@SuppressWarnings("serial")
public class ParallelMaze  {

// for each cell in the maze: Has the solver visited it yet?
private final AtomicBoolean[][] visited;

/**
 * Atomically marks this point as visited unless visited before
 * @return whether the point was visited for the first time, i.e. whether it could be marked
 */
boolean visit(Point p) {
    return  visited[p.getX()][p.getY()].compareAndSet(false, true);
}

public static void main(String[] args) {
    ForkJoinPool pool = new ForkJoinPool();
    ParallelMaze maze = new ParallelMaze(width, height, new Point(width-1, 0), new Point(0, height-1));
    // Start initial task
    long startTime = System.currentTimeMillis();
     // since SolverTask.compute() expects its starting point already visited, 
    // must do that explicitly for the global starting point:
    maze.visit(maze.start);
    maze.solution = pool.invoke(new SolverTask(maze.start, maze.end, maze));
    // One solution is enough: Stop all tasks that are still running
    pool.shutdownNow();
    pool.awaitTermination(Integer.MAX_VALUE, TimeUnit.DAYS);
    long endTime = System.currentTimeMillis();
    System.out.println("Computed solution of length " + maze.solution.size() + " to maze of size " + 
            width + "x" + height + " in " + ((float)(endTime - startTime))/1000 + "s.");
}
Run Code Online (Sandbox Code Playgroud)

elu*_*ode 16

有关stackoverflow的相关问题:

ForkJoinPool在invokeAll/join期间停止

ForkJoinPool似乎浪费了一个线程

我制作了一个可运行的精简版本(正在使用的jvm参数:-Xms256m -Xmx1024m -Xss8m):

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;
import java.util.concurrent.RecursiveTask;
import java.util.concurrent.TimeUnit;

public class Test1 {

    private static ForkJoinPool pool = new ForkJoinPool(2);

    private static class SomeAction extends RecursiveAction {

        private int counter;         //recursive counter
        private int childrenCount=80;//amount of children to spawn
        private int idx;             // just for displaying

        private SomeAction(int counter, int idx) {
            this.counter = counter;
            this.idx = idx;
        }

        @Override
        protected void compute() {

            System.out.println(
                "counter=" + counter + "." + idx +
                " activeThreads=" + pool.getActiveThreadCount() +
                " runningThreads=" + pool.getRunningThreadCount() +
                " poolSize=" + pool.getPoolSize() +
                " queuedTasks=" + pool.getQueuedTaskCount() +
                " queuedSubmissions=" + pool.getQueuedSubmissionCount() +
                " parallelism=" + pool.getParallelism() +
                " stealCount=" + pool.getStealCount());
            if (counter <= 0) return;

            List<SomeAction> list = new ArrayList<>(childrenCount);
            for (int i=0;i<childrenCount;i++){
                SomeAction next = new SomeAction(counter-1,i);
                list.add(next);
                next.fork();
            }


            for (SomeAction action:list){
                action.join();
            }
        }
    }

    public static void main(String[] args) throws Exception{
        pool.invoke(new SomeAction(2,0));
    }
}
Run Code Online (Sandbox Code Playgroud)

显然,当您执行连接时,当前线程会看到所需任务尚未完成,并为自己执行另一项任务.

它发生在java.util.concurrent.ForkJoinWorkerThread#joinTask.

但是,这个新任务会产生更多相同的任务,但是它们无法在池中找到线程,因为线程在连接中被锁定.而且由于它无法知道释放它们需要多长时间(线程可能处于无限循环或永远死锁),所以会产生新的线程(如路易斯·沃瑟曼所述,补偿连接的线程)):java.util.concurrent.ForkJoinPool#signalWork

因此,为了防止这种情况,您需要避免递归生成任务.

例如,如果在上面的代码中将初始参数设置为1,则活动线程数量将为2,即使您将childrenCount增加十倍.

还要注意,虽然活动线程数量增加,但运行线程数量小于或等于并行度.


Lou*_*man 10

来源评论:

补偿:除非已经有足够的活动线程,否则方法tryPreBlock()可以创建或重新激活备用线程,以补偿阻塞的加入者,直到它们解除阻塞.

我认为正在发生的事情是你没有很快完成任何任务,并且由于在提交新任务时没有可用的工作线程,因此会创建一个新线程.


edh*_*ned 7

严格,完全严格和最终严格的与处理有向无环图(DAG)有关.您可以谷歌这些条款,以充分了解它们.这是框架旨在处理的处理类型.查看API for Recursive ...中的代码,框架依赖于您的compute()代码来执行其他compute()链接,然后执行join().每个任务都像处理DAG一样执行单个连接().

您没有进行DAG处理.您正在分配许多新任务并在每个任务上等待(join()).阅读源代码.它非常复杂,但你可能能够弄明白.该框架没有做适当的任务管理.当它执行join()时,它将把等待的任务放在哪里?没有挂起的队列,需要监视器线程不断查看队列以查看完成的内容.这就是框架使用"延续线程"的原因.当一个任务确实加入()时,框架假设它正在等待单个较低的任务完成.当存在许多join()方法时,线程无法继续,因此需要存在辅助或继续线程.

如上所述,您需要一个分散 - 聚集类型的fork-join过程.你可以在那里分叉任务


小智 5

Holger Peineelusive-code发布的两个代码片段实际上并不遵循1.8 版本的 javadoc中出现的推荐实践:

在最典型的用法中,fork-join 对的作用类似于并行递归函数的调用(fork)和返回(join)。与其他形式的递归调用的情况一样,返回(连接)应该先最内层执行。例如, a.fork(); b.fork(); b.加入(); a.join(); 可能比在代码b之前加入代码a更有效。

在这两种情况下,FJPool 都是通过默认构造函数实例化的。这会导致使用asyncMode=false构建池,这是默认值:

@param asyncMode 如果为 true,
则为从未加入的分叉任务建立本地先进先出调度模式。在工作线程仅处理事件式异步任务的应用程序中,此模式可能比默认的基于本地堆栈的模式更合适。对于默认值,请使用 false。

这样工作队列实际上是 lifo:
head -> | t4 | t3 | t2 | t1 | ... | <- 尾巴

因此,在片段中,它们fork()所有任务将它们推送到堆栈上 ,然后以相同的顺序join(),即从最深的任务 (t1) 到最上面的任务 (t4) 有效地阻塞,直到其他线程窃取 (t1),然后 (t2) ) 等等。由于有足够的任务来阻止所有池线程 (task_count >> pool.getParallelism()),因此补偿将按照Louis Wasserman 的描述进行。