如何在Python 3中计算移动平均线?

Kar*_*ara 11 python python-3.x

假设我有一个清单:

y = ['1', '2', '3', '4','5','6','7','8','9','10']
Run Code Online (Sandbox Code Playgroud)

我想创建一个计算移动n天平均值的函数.所以,如果n是5,我希望我的代码计算前1-5,添加它并找到平均值,这将是3.0,然后继续到2-6,计算平均值,这将是4.0,然后3- 7,4-8,5-9,6-10.

我不想计算前n-1天,所以从第n天开始,它将计算前几天.

def moving_average(x:'list of prices', n):
    for num in range(len(x)+1):
        print(x[num-n:num])
Run Code Online (Sandbox Code Playgroud)

这似乎打印出我想要的东西:

[]
[]
[]
[]
[]

['1', '2', '3', '4', '5']

['2', '3', '4', '5', '6']

['3', '4', '5', '6', '7']

['4', '5', '6', '7', '8']

['5', '6', '7', '8', '9']

['6', '7', '8', '9', '10']
Run Code Online (Sandbox Code Playgroud)

但是,我不知道如何计算这些列表中的数字.有任何想法吗?

Mar*_*ers 21

旧版本的Python文档中有一个很棒的滑动窗口生成器,带有itertools示例:

from itertools import islice

def window(seq, n=2):
    "Returns a sliding window (of width n) over data from the iterable"
    "   s -> (s0,s1,...s[n-1]), (s1,s2,...,sn), ...                   "
    it = iter(seq)
    result = tuple(islice(it, n))
    if len(result) == n:
        yield result    
    for elem in it:
        result = result[1:] + (elem,)
        yield result
Run Code Online (Sandbox Code Playgroud)

使用你的移动平均线是微不足道的:

from __future__ import division  # For Python 2

def moving_averages(values, size):
    for selection in window(values, size):
        yield sum(selection) / size
Run Code Online (Sandbox Code Playgroud)

针对您的输入运行此命令(将字符串映射到整数)给出:

>>> y= ['1', '2', '3', '4','5','6','7','8','9','10']
>>> for avg in moving_averages(map(int, y), 5):
...     print(avg)
... 
3.0
4.0
5.0
6.0
7.0
8.0
Run Code Online (Sandbox Code Playgroud)

要返回"不完整"集None的第n - 1一次迭代,只需moving_averages稍微扩展一下这个函数:

def moving_averages(values, size):
    for _ in range(size - 1):
        yield None
    for selection in window(values, size):
        yield sum(selection) / size
Run Code Online (Sandbox Code Playgroud)


cfi*_*cfi 6

虽然我喜欢Martijn的答案,就像乔治一样,我想知道这是不是通过使用运行总和而不是sum()在大多数相同的数字上反复应用来更快.

None在渐变阶段将值设为默认值的想法也很有趣.事实上,可能存在许多可以设想移动平均线的不同场景.我们将平均值的计算分为三个阶段:

  1. 加速:开始迭代,其中当前迭代计数<窗口大小
  2. 稳定的进展:我们有精确的窗口大小可用于计算法线的元素数量 average := sum(x[iteration_counter-window_size:iteration_counter])/window_size
  3. 斜坡下降:在输入数据的末尾,我们可以返回另一个window_size - 1"平均"数字.

这是一个接受的功能

  • 任意迭代(生成器很好)作为数据的输入
  • 任意窗口大小> = 1
  • 用于在Ramp Up/Down阶段期间打开/关闭值生成的参数
  • 这些阶段的回调函数用于控制值的生成方式.这可用于不断提供默认值(例如None)或提供部分平均值

这是代码:

from collections import deque 

def moving_averages(data, size, rampUp=True, rampDown=True):
    """Slide a window of <size> elements over <data> to calc an average

    First and last <size-1> iterations when window is not yet completely
    filled with data, or the window empties due to exhausted <data>, the
    average is computed with just the available data (but still divided
    by <size>).
    Set rampUp/rampDown to False in order to not provide any values during
    those start and end <size-1> iterations.
    Set rampUp/rampDown to functions to provide arbitrary partial average
    numbers during those phases. The callback will get the currently
    available input data in a deque. Do not modify that data.
    """
    d = deque()
    running_sum = 0.0

    data = iter(data)
    # rampUp
    for count in range(1, size):
        try:
            val = next(data)
        except StopIteration:
            break
        running_sum += val
        d.append(val)
        #print("up: running sum:" + str(running_sum) + "  count: " + str(count) + "  deque: " + str(d))
        if rampUp:
            if callable(rampUp):
                yield rampUp(d)
            else:
                yield running_sum / size

    # steady
    exhausted_early = True
    for val in data:
        exhausted_early = False
        running_sum += val
        #print("st: running sum:" + str(running_sum) + "  deque: " + str(d))
        yield running_sum / size
        d.append(val)
        running_sum -= d.popleft()

    # rampDown
    if rampDown:
        if exhausted_early:
            running_sum -= d.popleft()
        for (count) in range(min(len(d), size-1), 0, -1):
            #print("dn: running sum:" + str(running_sum) + "  deque: " + str(d))
            if callable(rampDown):
                yield rampDown(d)
            else:
                yield running_sum / size
            running_sum -= d.popleft()
Run Code Online (Sandbox Code Playgroud)

它似乎比Martijn的版本快一点 - 尽管它更加优雅.这是测试代码:

print("")
print("Timeit")
print("-" * 80)

from itertools import islice
def window(seq, n=2):
    "Returns a sliding window (of width n) over data from the iterable"
    "   s -> (s0,s1,...s[n-1]), (s1,s2,...,sn), ...                   "
    it = iter(seq)
    result = tuple(islice(it, n))
    if len(result) == n:
        yield result    
    for elem in it:
        result = result[1:] + (elem,)
        yield result

# Martijn's version:
def moving_averages_SO(values, size):
    for selection in window(values, size):
        yield sum(selection) / size


import timeit
problems = [int(i) for i in (10, 100, 1000, 10000, 1e5, 1e6, 1e7)]
for problem_size in problems:
    print("{:12s}".format(str(problem_size)), end="")

    so = timeit.repeat("list(moving_averages_SO(range("+str(problem_size)+"), 5))", number=1*max(problems)//problem_size,
                       setup="from __main__ import moving_averages_SO")
    print("{:12.3f} ".format(min(so)), end="")

    my = timeit.repeat("list(moving_averages(range("+str(problem_size)+"), 5, False, False))", number=1*max(problems)//problem_size,
                       setup="from __main__ import moving_averages")
    print("{:12.3f} ".format(min(my)), end="")

    print("")
Run Code Online (Sandbox Code Playgroud)

并输出:

Timeit
--------------------------------------------------------------------------------
10                 7.242        7.656 
100                5.816        5.500 
1000               5.787        5.244 
10000              5.782        5.180 
100000             5.746        5.137 
1000000            5.745        5.198 
10000000           5.764        5.186 
Run Code Online (Sandbox Code Playgroud)

现在可以使用此函数调用解决原始问题:

print(list(moving_averages(range(1,11), 5,
                           rampUp=lambda _: None,
                           rampDown=False)))
Run Code Online (Sandbox Code Playgroud)

输出:

[None, None, None, None, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]
Run Code Online (Sandbox Code Playgroud)