Kar*_*ara 11 python python-3.x
假设我有一个清单:
y = ['1', '2', '3', '4','5','6','7','8','9','10']
Run Code Online (Sandbox Code Playgroud)
我想创建一个计算移动n天平均值的函数.所以,如果n是5,我希望我的代码计算前1-5,添加它并找到平均值,这将是3.0,然后继续到2-6,计算平均值,这将是4.0,然后3- 7,4-8,5-9,6-10.
我不想计算前n-1天,所以从第n天开始,它将计算前几天.
def moving_average(x:'list of prices', n):
for num in range(len(x)+1):
print(x[num-n:num])
Run Code Online (Sandbox Code Playgroud)
这似乎打印出我想要的东西:
[]
[]
[]
[]
[]
['1', '2', '3', '4', '5']
['2', '3', '4', '5', '6']
['3', '4', '5', '6', '7']
['4', '5', '6', '7', '8']
['5', '6', '7', '8', '9']
['6', '7', '8', '9', '10']
Run Code Online (Sandbox Code Playgroud)
但是,我不知道如何计算这些列表中的数字.有任何想法吗?
Mar*_*ers 21
旧版本的Python文档中有一个很棒的滑动窗口生成器,带有itertools示例:
from itertools import islice
def window(seq, n=2):
"Returns a sliding window (of width n) over data from the iterable"
" s -> (s0,s1,...s[n-1]), (s1,s2,...,sn), ... "
it = iter(seq)
result = tuple(islice(it, n))
if len(result) == n:
yield result
for elem in it:
result = result[1:] + (elem,)
yield result
Run Code Online (Sandbox Code Playgroud)
使用你的移动平均线是微不足道的:
from __future__ import division # For Python 2
def moving_averages(values, size):
for selection in window(values, size):
yield sum(selection) / size
Run Code Online (Sandbox Code Playgroud)
针对您的输入运行此命令(将字符串映射到整数)给出:
>>> y= ['1', '2', '3', '4','5','6','7','8','9','10']
>>> for avg in moving_averages(map(int, y), 5):
... print(avg)
...
3.0
4.0
5.0
6.0
7.0
8.0
Run Code Online (Sandbox Code Playgroud)
要返回"不完整"集None的第n - 1一次迭代,只需moving_averages稍微扩展一下这个函数:
def moving_averages(values, size):
for _ in range(size - 1):
yield None
for selection in window(values, size):
yield sum(selection) / size
Run Code Online (Sandbox Code Playgroud)
虽然我喜欢Martijn的答案,就像乔治一样,我想知道这是不是通过使用运行总和而不是sum()在大多数相同的数字上反复应用来更快.
None在渐变阶段将值设为默认值的想法也很有趣.事实上,可能存在许多可以设想移动平均线的不同场景.我们将平均值的计算分为三个阶段:
average := sum(x[iteration_counter-window_size:iteration_counter])/window_sizewindow_size - 1"平均"数字.这是一个接受的功能
None)或提供部分平均值这是代码:
from collections import deque
def moving_averages(data, size, rampUp=True, rampDown=True):
"""Slide a window of <size> elements over <data> to calc an average
First and last <size-1> iterations when window is not yet completely
filled with data, or the window empties due to exhausted <data>, the
average is computed with just the available data (but still divided
by <size>).
Set rampUp/rampDown to False in order to not provide any values during
those start and end <size-1> iterations.
Set rampUp/rampDown to functions to provide arbitrary partial average
numbers during those phases. The callback will get the currently
available input data in a deque. Do not modify that data.
"""
d = deque()
running_sum = 0.0
data = iter(data)
# rampUp
for count in range(1, size):
try:
val = next(data)
except StopIteration:
break
running_sum += val
d.append(val)
#print("up: running sum:" + str(running_sum) + " count: " + str(count) + " deque: " + str(d))
if rampUp:
if callable(rampUp):
yield rampUp(d)
else:
yield running_sum / size
# steady
exhausted_early = True
for val in data:
exhausted_early = False
running_sum += val
#print("st: running sum:" + str(running_sum) + " deque: " + str(d))
yield running_sum / size
d.append(val)
running_sum -= d.popleft()
# rampDown
if rampDown:
if exhausted_early:
running_sum -= d.popleft()
for (count) in range(min(len(d), size-1), 0, -1):
#print("dn: running sum:" + str(running_sum) + " deque: " + str(d))
if callable(rampDown):
yield rampDown(d)
else:
yield running_sum / size
running_sum -= d.popleft()
Run Code Online (Sandbox Code Playgroud)
它似乎比Martijn的版本快一点 - 尽管它更加优雅.这是测试代码:
print("")
print("Timeit")
print("-" * 80)
from itertools import islice
def window(seq, n=2):
"Returns a sliding window (of width n) over data from the iterable"
" s -> (s0,s1,...s[n-1]), (s1,s2,...,sn), ... "
it = iter(seq)
result = tuple(islice(it, n))
if len(result) == n:
yield result
for elem in it:
result = result[1:] + (elem,)
yield result
# Martijn's version:
def moving_averages_SO(values, size):
for selection in window(values, size):
yield sum(selection) / size
import timeit
problems = [int(i) for i in (10, 100, 1000, 10000, 1e5, 1e6, 1e7)]
for problem_size in problems:
print("{:12s}".format(str(problem_size)), end="")
so = timeit.repeat("list(moving_averages_SO(range("+str(problem_size)+"), 5))", number=1*max(problems)//problem_size,
setup="from __main__ import moving_averages_SO")
print("{:12.3f} ".format(min(so)), end="")
my = timeit.repeat("list(moving_averages(range("+str(problem_size)+"), 5, False, False))", number=1*max(problems)//problem_size,
setup="from __main__ import moving_averages")
print("{:12.3f} ".format(min(my)), end="")
print("")
Run Code Online (Sandbox Code Playgroud)
并输出:
Timeit
--------------------------------------------------------------------------------
10 7.242 7.656
100 5.816 5.500
1000 5.787 5.244
10000 5.782 5.180
100000 5.746 5.137
1000000 5.745 5.198
10000000 5.764 5.186
Run Code Online (Sandbox Code Playgroud)
现在可以使用此函数调用解决原始问题:
print(list(moving_averages(range(1,11), 5,
rampUp=lambda _: None,
rampDown=False)))
Run Code Online (Sandbox Code Playgroud)
输出:
[None, None, None, None, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
13041 次 |
| 最近记录: |