我在数据框中有一堆列,我想粘贴在一起(用" - "分隔),如下所示:
data <- data.frame('a' = 1:3,
'b' = c('a','b','c'),
'c' = c('d', 'e', 'f'),
'd' = c('g', 'h', 'i'))
i.e.
a b c d
1 a d g
2 b e h
3 c f i
Run Code Online (Sandbox Code Playgroud)
我想成为:
a x
1 a-d-g
2 b-e-h
3 c-f-i
Run Code Online (Sandbox Code Playgroud)
我通常可以这样做:
within(data, x <- paste(b,c,d,sep='-'))
Run Code Online (Sandbox Code Playgroud)
然后删除旧列,但不幸的是我不知道具体列的名称,只是所有列的集体名称,例如我会知道 cols <- c('b','c','d')
有谁知道这样做的方法?
Ant*_*ico 87
# your starting data..
data <- data.frame('a' = 1:3, 'b' = c('a','b','c'), 'c' = c('d', 'e', 'f'), 'd' = c('g', 'h', 'i'))
# columns to paste together
cols <- c( 'b' , 'c' , 'd' )
# create a new column `x` with the three columns collapsed together
data$x <- apply( data[ , cols ] , 1 , paste , collapse = "-" )
# remove the unnecessary columns
data <- data[ , !( names( data ) %in% cols ) ]
Run Code Online (Sandbox Code Playgroud)
Bri*_*ggs 41
作为baptiste答案的变体,data定义为你所拥有的和你想要放在一起的列cols
cols <- c("b", "c", "d")
Run Code Online (Sandbox Code Playgroud)
您可以使用添加新列data和删除旧列
data$x <- do.call(paste, c(data[cols], sep="-"))
for (co in cols) data[co] <- NULL
Run Code Online (Sandbox Code Playgroud)
这使
> data
a x
1 1 a-d-g
2 2 b-e-h
3 3 c-f-i
Run Code Online (Sandbox Code Playgroud)
dat*_*eve 28
使用tidyr包,可以在1个函数调用中轻松处理.
data <- data.frame('a' = 1:3,
'b' = c('a','b','c'),
'c' = c('d', 'e', 'f'),
'd' = c('g', 'h', 'i'))
tidyr::unite_(data, paste(colnames(data)[-1], collapse="_"), colnames(data)[-1])
a b_c_d
1 1 a_d_g
2 2 b_e_h
3 3 c_f_i
Run Code Online (Sandbox Code Playgroud)
编辑:排除第一列,其他所有内容都被粘贴.
# tidyr_0.6.3
unite(data, newCol, -a)
# or by column index unite(data, newCol, -1)
# a newCol
# 1 1 a_d_g
# 2 2 b_e_h
# 3 3 c_f_i
Run Code Online (Sandbox Code Playgroud)
bap*_*ste 12
我将构建一个新的data.frame:
d <- data.frame('a' = 1:3, 'b' = c('a','b','c'), 'c' = c('d', 'e', 'f'), 'd' = c('g', 'h', 'i'))
cols <- c( 'b' , 'c' , 'd' )
data.frame(a = d[, 'a'], x = do.call(paste, c(d[ , cols], list(sep = '-'))))
Run Code Online (Sandbox Code Playgroud)
只是为了添加额外的解决方案Reduce,可能do.call比apply它更慢,但探测性能更好,因为它会避免matrix转换.另外,for我们可以使用循环setdiff来删除不需要的列
cols <- c('b','c','d')
data$x <- Reduce(function(...) paste(..., sep = "-"), data[cols])
data[setdiff(names(data), cols)]
# a x
# 1 1 a-d-g
# 2 2 b-e-h
# 3 3 c-f-i
Run Code Online (Sandbox Code Playgroud)
或者,我们可以data使用data.table包更新(假设新数据)
library(data.table)
setDT(data)[, x := Reduce(function(...) paste(..., sep = "-"), .SD[, mget(cols)])]
data[, (cols) := NULL]
data
# a x
# 1: 1 a-d-g
# 2: 2 b-e-h
# 3: 3 c-f-i
Run Code Online (Sandbox Code Playgroud)
另一种选择是使用.SDcols,而不是mget作为
setDT(data)[, x := Reduce(function(...) paste(..., sep = "-"), .SD), .SDcols = cols]
Run Code Online (Sandbox Code Playgroud)
我在一个小样本上对 Anthony Damico、Brian Diggs 和 data_steve 的答案进行了基准测试,tbl_df并得到了以下结果。
> data <- data.frame('a' = 1:3,
+ 'b' = c('a','b','c'),
+ 'c' = c('d', 'e', 'f'),
+ 'd' = c('g', 'h', 'i'))
> data <- tbl_df(data)
> cols <- c("b", "c", "d")
> microbenchmark(
+ do.call(paste, c(data[cols], sep="-")),
+ apply( data[ , cols ] , 1 , paste , collapse = "-" ),
+ tidyr::unite_(data, "x", cols, sep="-")$x,
+ times=1000
+ )
Unit: microseconds
expr min lq mean median uq max neval
do.call(paste, c(data[cols], sep = "-")) 65.248 78.380 93.90888 86.177 99.3090 436.220 1000
apply(data[, cols], 1, paste, collapse = "-") 223.239 263.044 313.11977 289.514 338.5520 743.583 1000
tidyr::unite_(data, "x", cols, sep = "-")$x 376.716 448.120 556.65424 501.877 606.9315 11537.846 1000
Run Code Online (Sandbox Code Playgroud)
但是,当我自己评估tbl_df大约 100 万行和 10 列时,结果完全不同。
> microbenchmark(
+ do.call(paste, c(data[c("a", "b")], sep="-")),
+ apply( data[ , c("a", "b") ] , 1 , paste , collapse = "-" ),
+ tidyr::unite_(data, "c", c("a", "b"), sep="-")$c,
+ times=25
+ )
Unit: milliseconds
expr min lq mean median uq max neval
do.call(paste, c(data[c("a", "b")], sep="-")) 930.7208 951.3048 1129.334 997.2744 1066.084 2169.147 25
apply( data[ , c("a", "b") ] , 1 , paste , collapse = "-" ) 9368.2800 10948.0124 11678.393 11136.3756 11878.308 17587.617 25
tidyr::unite_(data, "c", c("a", "b"), sep="-")$c 968.5861 1008.4716 1095.886 1035.8348 1082.726 1759.349 25
Run Code Online (Sandbox Code Playgroud)
在我看来,sprintf-function 也应该在这些答案中占有一席之地。您可以sprintf按如下方式使用:
do.call(sprintf, c(d[cols], '%s-%s-%s'))
Run Code Online (Sandbox Code Playgroud)
这使:
[1] "a-d-g" "b-e-h" "c-f-i"
Run Code Online (Sandbox Code Playgroud)
并创建所需的数据框:
data.frame(a = d$a, x = do.call(sprintf, c(d[cols], '%s-%s-%s')))
Run Code Online (Sandbox Code Playgroud)
给予:
a x
1 1 a-d-g
2 2 b-e-h
3 3 c-f-i
Run Code Online (Sandbox Code Playgroud)
虽然与@BrianDiggssprintf的do.call/paste组合相比没有明显的优势,但当您还想填充所需字符串的某些部分或要指定数字时,它特别有用。有关?sprintf多个选项,请参阅。
另一种变体是使用pmapfrom purrr:
pmap(d[2:4], paste, sep = '-')
Run Code Online (Sandbox Code Playgroud)
注意:此pmap解决方案仅在列不是因子时才有效。
更大数据集的基准:
# create a larger dataset
d2 <- d[sample(1:3,1e6,TRUE),]
# benchmark
library(microbenchmark)
microbenchmark(
docp = do.call(paste, c(d2[cols], sep="-")),
appl = apply( d2[, cols ] , 1 , paste , collapse = "-" ),
tidr = tidyr::unite_(d2, "x", cols, sep="-")$x,
docs = do.call(sprintf, c(d2[cols], '%s-%s-%s')),
times=10)
Run Code Online (Sandbox Code Playgroud)
结果是:
Unit: milliseconds
expr min lq mean median uq max neval cld
docp 214.1786 226.2835 297.1487 241.6150 409.2495 493.5036 10 a
appl 3832.3252 4048.9320 4131.6906 4072.4235 4255.1347 4486.9787 10 c
tidr 206.9326 216.8619 275.4556 252.1381 318.4249 407.9816 10 a
docs 413.9073 443.1550 490.6520 453.1635 530.1318 659.8400 10 b
Run Code Online (Sandbox Code Playgroud)
使用数据:
d <- data.frame(a = 1:3, b = c('a','b','c'), c = c('d','e','f'), d = c('g','h','i'))
Run Code Online (Sandbox Code Playgroud)
这是一种非常规(但快速)的方法:使用fwritefromdata.table将列“粘贴”在一起,然后fread将其读回。为方便起见,我将这些步骤编写为名为 的函数fpaste:
fpaste <- function(dt, sep = ",") {
x <- tempfile()
fwrite(dt, file = x, sep = sep, col.names = FALSE)
fread(x, sep = "\n", header = FALSE)
}
Run Code Online (Sandbox Code Playgroud)
下面是一个例子:
d <- data.frame(a = 1:3, b = c('a','b','c'), c = c('d','e','f'), d = c('g','h','i'))
cols = c("b", "c", "d")
fpaste(d[cols], "-")
# V1
# 1: a-d-g
# 2: b-e-h
# 3: c-f-i
Run Code Online (Sandbox Code Playgroud)
它的表现如何?
d2 <- d[sample(1:3,1e6,TRUE),]
library(microbenchmark)
microbenchmark(
docp = do.call(paste, c(d2[cols], sep="-")),
tidr = tidyr::unite_(d2, "x", cols, sep="-")$x,
docs = do.call(sprintf, c(d2[cols], '%s-%s-%s')),
appl = apply( d2[, cols ] , 1 , paste , collapse = "-" ),
fpaste = fpaste(d2[cols], "-")$V1,
dt2 = as.data.table(d2)[, x := Reduce(function(...) paste(..., sep = "-"), .SD), .SDcols = cols][],
times=10)
# Unit: milliseconds
# expr min lq mean median uq max neval
# docp 215.34536 217.22102 220.3603 221.44104 223.27224 225.0906 10
# tidr 215.19907 215.81210 220.7131 220.09636 225.32717 229.6822 10
# docs 281.16679 285.49786 289.4514 286.68738 290.17249 312.5484 10
# appl 2816.61899 3106.19944 3259.3924 3266.45186 3401.80291 3804.7263 10
# fpaste 88.57108 89.67795 101.1524 90.59217 91.76415 197.1555 10
# dt2 301.95508 310.79082 384.8247 316.29807 383.94993 874.4472 10
Run Code Online (Sandbox Code Playgroud)
Simple and straightforward code with unite from {tidyr} v1.2.0
{tidyr v1.2.0}library(tidyr)
data %>% unite("x", all_of(cols), remove = T, sep = "-")
Run Code Online (Sandbox Code Playgroud)
"x" is the name of the new column.all_of(cols) is a selection of what columns we want to merge. Using <tidy-select> the column names don't need to be hardcoded in.remove = T we remove the input columnssep = "-" we define the separator between valuesNA, we can also add na.rm = TRUE# a x
# 1 1 a-d-g
# 2 2 b-e-h
# 3 3 c-f-i
Run Code Online (Sandbox Code Playgroud)
data <- data.frame('a' = 1:3,
'b' = c('a','b','c'),
'c' = c('d', 'e', 'f'),
'd' = c('g', 'h', 'i'))
cols <- c('b','c','d')
data
# a b c d
# 1 1 a d g
# 2 2 b e h
# 3 3 c f i
Run Code Online (Sandbox Code Playgroud)
*This solution is different from what already posted.