Jon*_*des 19 sql-server-2008 sql-server
我有一个相当复杂的查询,它自己只运行几秒钟,但是当包装在表值函数中时,它要慢得多;我实际上并没有让它完成,但它运行了长达十分钟而没有结束。唯一的变化是用日期参数替换两个日期变量(用日期文字初始化):
七秒内运行
DECLARE @StartDate DATE = '2011-05-21'
DECLARE @EndDate DATE = '2011-05-23'
DECLARE @Data TABLE (...)
INSERT INTO @Data(...) SELECT...
SELECT * FROM @Data
Run Code Online (Sandbox Code Playgroud)
运行至少十分钟
CREATE FUNCTION X (@StartDate DATE, @EndDate DATE)
RETURNS TABLE AS RETURN
SELECT ...
SELECT * FROM X ('2011-05-21', '2011-05-23')
Run Code Online (Sandbox Code Playgroud)
我之前曾将该函数编写为带有 RETURNS @Data TABLE (...) 子句的多语句 TVF,但是将其替换为内联结构并没有产生明显的变化。TVF 的长时间运行时间为实际SELECT * FROM X
时间;实际上创建 UDF 只需要几秒钟。
我可以发布有问题的查询,但它有点长(约 165 行),并且基于第一种方法的成功,我怀疑正在发生其他事情。浏览执行计划,它们似乎是相同的。
我试过将查询分解成更小的部分,没有改变。单独执行时,没有一个部分需要超过几秒钟,但 TVF 仍然挂起。
我看到一个非常相似的问题,/sf/ask/293335451/,但我不确定该解决方案是否适用。也许有人已经看到了这个问题并且知道一个更通用的解决方案?谢谢!
这是经过几分钟处理后的 dm_exec_requests:
session_id 59
request_id 0
start_time 40688.46517
status running
command UPDATE
sql_handle 0x030015002D21AF39242A1101ED9E00000000000000000000
statement_start_offset 10962
statement_end_offset 16012
plan_handle 0x050015002D21AF3940C1E6B0040000000000000000000000
database_id 21
user_id 1
connection_id 314AE0E4-A1FB-4602-BF40-02D857BAD6CF
blocking_session_id 0
wait_type NULL
wait_time 0
last_wait_type SOS_SCHEDULER_YIELD
wait_resource
open_transaction_count 0
open_resultset_count 1
transaction_id 48030651
context_info 0x
percent_complete 0
estimated_completion_time 0
cpu_time 344777
total_elapsed_time 348632
scheduler_id 7
task_address 0x000000045FC85048
reads 1549
writes 13
logical_reads 30331425
text_size 2147483647
language us_english
date_format mdy
date_first 7
quoted_identifier 1
arithabort 1
ansi_null_dflt_on 1
ansi_defaults 0
ansi_warnings 1
ansi_padding 1
ansi_nulls 1
concat_null_yields_null 1
transaction_isolation_level 2
lock_timeout -1
deadlock_priority 0
row_count 105
prev_error 0
nest_level 1
granted_query_memory 170
executing_managed_code 0
group_id 2
query_hash 0xBE6A286546AF62FC
query_plan_hash 0xD07630B947043AF0
Run Code Online (Sandbox Code Playgroud)
这是完整的查询:
CREATE FUNCTION Routine.MarketingDashboardECommerceBase (@StartDate DATE, @EndDate DATE)
RETURNS TABLE AS RETURN
WITH RegionsByCode AS (SELECT CountryCode, MIN(Region) AS Region FROM Staging.Volusion.MarketingRegions GROUP BY CountryCode)
SELECT
D.Date, Div.Division, Region.Region, C.Category1, C.Category2, C.Category3,
COALESCE(V.Visits, 0) AS Visits,
COALESCE(Dem.Demos, 0) AS Demos,
COALESCE(S.GrossStores, 0) AS GrossStores,
COALESCE(S.PaidStores, 0) AS PaidStores,
COALESCE(S.NetStores, 0) AS NetStores,
COALESCE(S.StoresActiveNow, 0) AS StoresActiveNow
-- This line causes the run time to climb from a few seconds to over an hour!
--COALESCE(V.Visits, 0) * COALESCE(ACS.AvgClickCost, GAAC.AvgAdCost, 0.00) AS TotalAdCost
-- This line alone does not inflate the run time
--ACS.AvgClickCost
-- This line is enough to increase the run time to at least a couple minutes
--GAAC.AvgAdCost
FROM
--Dates AS D
(SELECT SQLDate AS Date FROM Dates WHERE SQLDate BETWEEN @StartDate AND @EndDate) AS D
CROSS JOIN (SELECT 'UK' AS Division UNION SELECT 'US' UNION SELECT 'IN' UNION SELECT 'Unknown') AS Div
CROSS JOIN (SELECT Category1, Category2, Category3 FROM Routine.MarketingDashboardCampaignMap UNION SELECT 'Unknown', 'Unknown', 'Unknown') AS C
CROSS JOIN (SELECT DISTINCT Region FROM Staging.Volusion.MarketingRegions) AS Region
-- Visitors
LEFT JOIN
(
SELECT
V.Date,
CASE WHEN V.Country IN ('United Kingdom', 'Guernsey', 'Ireland', 'Jersey') THEN 'UK'
WHEN V.Country IN ('United States', 'Canada', 'Puerto Rico', 'U.S. Virgin Islands') THEN 'US'
ELSE 'IN' END AS Division,
COALESCE(MR.Region, 'Unknown') AS Region,
C.Category1, C.Category2, C.Category3,
SUM(V.Visits) AS Visits
FROM
RawData.GoogleAnalytics.Visits AS V
INNER JOIN Routine.MarketingDashboardCampaignMap AS C ON V.LandingPage = C.LandingPage AND V.Campaign = C.Campaign AND V.Medium = C.Medium AND V.Referrer = C.Referrer AND V.Source = C.Source
LEFT JOIN Staging.Volusion.MarketingRegions AS MR ON V.Country = MR.CountryName
WHERE
V.Date BETWEEN @StartDate AND @EndDate
GROUP BY
V.Date,
CASE WHEN V.Country IN ('United Kingdom', 'Guernsey', 'Ireland', 'Jersey') THEN 'UK'
WHEN V.Country IN ('United States', 'Canada', 'Puerto Rico', 'U.S. Virgin Islands') THEN 'US'
ELSE 'IN' END,
COALESCE(MR.Region, 'Unknown'), C.Category1, C.Category2, C.Category3
) AS V ON D.Date = V.Date AND Div.Division = V.Division AND Region.Region = V.Region AND C.Category1 = V.Category1 AND C.Category2 = V.Category2 AND C.Category3 = V.Category3
-- Demos
LEFT JOIN
(
SELECT
OD.SQLDate,
G.Division,
COALESCE(MR.Region, 'Unknown') AS Region,
COALESCE(C.Category1, 'Unknown') AS Category1,
COALESCE(C.Category2, 'Unknown') AS Category2,
COALESCE(C.Category3, 'Unknown') AS Category3,
SUM(D.Demos) AS Demos
FROM
Demos AS D
INNER JOIN Orders AS O ON D."Order" = O."Order"
INNER JOIN Dates AS OD ON O.OrderDate = OD.DateSerial
INNER JOIN MarketingSources AS MS ON D.Source = MS.Source
LEFT JOIN RegionsByCode AS MR ON MS.CountryCode = MR.CountryCode
LEFT JOIN
(
SELECT
G.TransactionID,
MIN (
CASE WHEN G.Country IN ('United Kingdom', 'Guernsey', 'Ireland', 'Jersey') THEN 'UK'
WHEN G.Country IN ('United States', 'Canada', 'Puerto Rico', 'U.S. Virgin Islands') THEN 'US'
ELSE 'IN' END
) AS Division
FROM
RawData.GoogleAnalytics.Geography AS G
WHERE
TransactionDate BETWEEN @StartDate AND @EndDate
AND NOT EXISTS (SELECT * FROM RawData.GoogleAnalytics.Geography AS G2 WHERE G.TransactionID = G2.TransactionID AND G2.EffectiveDate > G.EffectiveDate)
GROUP BY
G.TransactionID
) AS G ON O.VolusionOrderID = G.TransactionID
LEFT JOIN RawData.GoogleAnalytics.Referrers AS R ON O.VolusionOrderID = R.TransactionID AND NOT EXISTS (SELECT * FROM RawData.GoogleAnalytics.Referrers AS R2 WHERE R.TransactionID = R2.TransactionID AND R2.EffectiveDate > R.EffectiveDate)
LEFT JOIN Routine.MarketingDashboardCampaignMap AS C ON MS.LandingPage = C.LandingPage AND MS.Campaign = C.Campaign AND MS.Medium = C.Medium AND COALESCE(R.ReferralPath, '(not set)') = C.Referrer AND MS.SourceName = C.Source
WHERE
O.IsDeleted = 'No'
AND OD.SQLDate BETWEEN @StartDate AND @EndDate
GROUP BY
OD.SQLDate,
G.Division,
COALESCE(MR.Region, 'Unknown'),
COALESCE(C.Category1, 'Unknown'),
COALESCE(C.Category2, 'Unknown'),
COALESCE(C.Category3, 'Unknown')
) AS Dem ON D.Date = Dem.SQLDate AND Div.Division = Dem.Division AND Region.Region = Dem.Region AND C.Category1 = Dem.Category1 AND C.Category2 = Dem.Category2 AND C.Category3 = Dem.Category3
-- Stores
LEFT JOIN
(
SELECT
OD.SQLDate,
CASE WHEN O.VolusionCountryCode = 'GB' THEN 'UK'
WHEN A.CountryShortName IN ('U.S.', 'Canada', 'Puerto Rico', 'U.S. Virgin Islands') THEN 'US'
ELSE 'IN' END AS Division,
COALESCE(MR.Region, 'Unknown') AS Region,
COALESCE(CpM.Category1, 'Unknown') AS Category1,
COALESCE(CpM.Category2, 'Unknown') AS Category2,
COALESCE(CpM.Category3, 'Unknown') AS Category3,
SUM(S.Stores) AS GrossStores,
SUM(CASE WHEN O.DatePaid <> -1 THEN 1 ELSE 0 END) AS PaidStores,
SUM(CASE WHEN O.DatePaid <> -1 AND CD.WeekEnding <> OD.WeekEnding THEN 1 ELSE 0 END) AS NetStores,
SUM(CASE WHEN O.DatePaid <> -1 THEN SH.ActiveStores ELSE 0 END) AS StoresActiveNow
FROM
Stores AS S
INNER JOIN Orders AS O ON S."Order" = O."Order"
INNER JOIN Dates AS OD ON O.OrderDate = OD.DateSerial
INNER JOIN Dates AS CD ON O.CancellationDate = CD.DateSerial
INNER JOIN Customers AS C ON O.CustomerNow = C.Customer
INNER JOIN MarketingSources AS MS ON C.Source = MS.Source
INNER JOIN StoreHistory AS SH ON S.MostRecentHistory = SH.History
INNER JOIN Addresses AS A ON C.Address = A.Address
LEFT JOIN RegionsByCode AS MR ON MS.CountryCode = MR.CountryCode
LEFT JOIN Routine.MarketingDashboardCampaignMap AS CpM ON CpM.LandingPage = 'N/A' AND MS.Campaign = CpM.Campaign AND MS.Medium = CpM.Medium AND CpM.Referrer = 'N/A' AND MS.SourceName = CpM.Source
WHERE
O.IsDeleted = 'No'
AND OD.SQLDate BETWEEN @StartDate AND @EndDate
GROUP BY
OD.SQLDate,
CASE WHEN O.VolusionCountryCode = 'GB' THEN 'UK'
WHEN A.CountryShortName IN ('U.S.', 'Canada', 'Puerto Rico', 'U.S. Virgin Islands') THEN 'US'
ELSE 'IN' END,
COALESCE(MR.Region, 'Unknown'),
COALESCE(CpM.Category1, 'Unknown'),
COALESCE(CpM.Category2, 'Unknown'),
COALESCE(CpM.Category3, 'Unknown')
) AS S ON D.Date = S.SQLDate AND Div.Division = S.Division AND Region.Region = S.Region AND C.Category1 = S.Category1 AND C.Category2 = S.Category2 AND C.Category3 = S.Category3
-- Google Analytics spend
LEFT JOIN
(
SELECT
AC.Date, C.Category1, C.Category2, C.Category3, SUM(AC.AdCost) / SUM(AC.Visits) AS AvgAdCost
FROM
RawData.GoogleAnalytics.AdCosts AS AC
INNER JOIN
(
SELECT Campaign, Medium, Source, MIN(Category1) AS Category1, MIN(Category2) AS Category2, MIN(Category3) AS Category3
FROM Routine.MarketingDashboardCampaignMap
WHERE Category1 <> 'Affiliate'
GROUP BY Campaign, Medium, Source
) AS C ON AC.Campaign = C.Campaign AND AC.Medium = C.Medium AND AC.Source = C.Source
WHERE
AC.Date BETWEEN @StartDate AND @EndDate
GROUP BY
AC.Date, C.Category1, C.Category2, C.Category3
HAVING
SUM(AC.AdCost) > 0.00 AND SUM(AC.Visits) > 0
) AS GAAC ON D.Date = GAAC.Date AND C.Category1 = GAAC.Category1 AND C.Category2 = GAAC.Category2 AND C.Category3 = GAAC.Category3
-- adCenter spend
LEFT JOIN
(
SELECT Date, SUM(Spend) / SUM(Clicks) AS AvgClickCost
FROM RawData.AdCenter.Spend
WHERE Date BETWEEN @StartDate AND @EndDate
GROUP BY Date
HAVING SUM(Spend) > 0.00 AND SUM(Clicks) > 0
) AS ACS ON D.Date = ACS.Date AND C.Category1 = 'PPC' AND C.Category2 = 'adCenter' AND C.Category3 = 'N/A'
WHERE
V.Visits > 0 OR Dem.Demos > 0 OR S.GrossStores > 0
GO
SELECT * FROM Routine.MarketingDashboardECommerceBase('2011-05-21', '2011-05-23')
Run Code Online (Sandbox Code Playgroud)
我将问题隔离到查询中的一行。请记住,查询有 160 行长,如果我从 SELECT 子句中禁用此行,则无论哪种方式,我都会包含相关表:
COALESCE(V.Visits, 0) * COALESCE(ACS.AvgClickCost, GAAC.AvgAdCost, 0.00)
Run Code Online (Sandbox Code Playgroud)
...运行时间从 63 分钟下降到5 秒(内联 CTE 使其比原来的 7 秒查询稍快)。包含ACS.AvgClickCost
orGAAC.AvgAdCost
会导致运行时间激增。特别奇怪的是,这些字段来自两个子查询,它们分别有十行和三行!当独立运行时,它们每个都在零秒内运行,并且行数如此之短,我希望即使使用嵌套循环,连接时间也很微不足道。
任何猜测为什么这个看似无害的计算会完全摆脱 TVF,而它作为独立查询运行得非常快?
归档时间: |
|
查看次数: |
20481 次 |
最近记录: |