Jul*_*don 5 postgresql performance scalability window-functions postgresql-performance
我已经在stackoverflow上发布了这个问题,但我想我可能会在这里得到更好的答案。
我有一个表存储用户发生的数百万个事件:
Table "public.events"
Column | Type | Modifiers
------------+--------------------------+-----------------------------------------------------------
event_id | integer | not null default nextval('events_event_id_seq'::regclass)
user_id | bigint |
event_type | integer |
ts | timestamp with time zone |
Run Code Online (Sandbox Code Playgroud)
event_type 有 5 个不同的值、数百万用户以及每个用户每个 event_type 的不同事件数,通常范围为 1 到 50。
数据样本:
+-----------+----------+-------------+----------------------------+
| event_id | user_id | event_type | timestamp |
+-----------+----------+-------------+----------------------------+
| 1 | 1 | 1 | January, 01 2015 00:00:00 |
| 2 | 1 | 1 | January, 10 2015 00:00:00 |
| 3 | 1 | 1 | January, 20 2015 00:00:00 |
| 4 | 1 | 1 | January, 30 2015 00:00:00 |
| 5 | 1 | 1 | February, 10 2015 00:00:00 |
| 6 | 1 | 1 | February, 21 2015 00:00:00 |
| 7 | 1 | 1 | February, 22 2015 00:00:00 |
+-----------+----------+-------------+----------------------------+
Run Code Online (Sandbox Code Playgroud)
我想获取每个事件的同一用户的事件数以及事件event_type
发生前 30 天内发生的事件数。
它应该如下所示:
+-----------+----------+-------------+-----------------------------+-------+
| event_id | user_id | event_type | timestamp | count |
+-----------+----------+-------------+-----------------------------+-------+
| 1 | 1 | 1 | January, 01 2015 00:00:00 | 1 |
| 2 | 1 | 1 | January, 10 2015 00:00:00 | 2 |
| 3 | 1 | 1 | January, 20 2015 00:00:00 | 3 |
| 4 | 1 | 1 | January, 30 2015 00:00:00 | 4 |
| 5 | 1 | 1 | February, 10 2015 00:00:00 | 3 |
| 6 | 1 | 1 | February, 21 2015 00:00:00 | 3 |
| 7 | 1 | 1 | February, 22 2015 00:00:00 | 4 |
+-----------+----------+-------------+-----------------------------+-------+
Run Code Online (Sandbox Code Playgroud)
到目前为止,我成功地使用了两个不同的查询(在 PostgreSQL 9.4.1 上生成的 1000 行示例进行测试):
SELECT
event_id, user_id,event_type,"timestamp",
(
SELECT count(*)
FROM events
WHERE timestamp >= e.timestamp - interval '30 days'
AND timestamp <= e.timestamp
AND user_id = e.user_id
AND event_type = e.event_type
GROUP BY event_type, user_id
) as "count"
FROM events e;
Run Code Online (Sandbox Code Playgroud)
它工作得很好,特别是因为我有时间戳索引:
Index Scan using pk_event_id on events e (cost=0.28..12018.74 rows=1000 width=24)
SubPlan 1
-> GroupAggregate (cost=4.33..11.97 rows=1 width=20)
Group Key: events.event_type, events.user_id
-> Bitmap Heap Scan on events (cost=4.33..11.95 rows=1 width=20)
Recheck Cond: ((""timestamp"" >= (e."timestamp" - '30 days'::interval)) AND ("timestamp" <= e."timestamp"))
Filter: ((user_id = e.user_id) AND (event_type = e.event_type))
-> Bitmap Index Scan on idx_events_timestamp (cost=0.00..4.33 rows=5 width=0)
Index Cond: ((""timestamp"" >= (e."timestamp" - '30 days'::interval)) AND ("timestamp" <= e."timestamp"))
Run Code Online (Sandbox Code Playgroud)
尽管如此,它的扩展性仍然不佳,我认为使用窗口函数可能会提高性能:
SELECT toto.event_id,toto.user_id,toto.event_type,toto.lv as time,COUNT(*)
FROM(
SELECT e.event_id, e.user_id,e.event_type,"timestamp",
last_value("timestamp") OVER w as lv,
unnest(array_agg(e."timestamp") OVER w) as agg
FROM events e
WINDOW w AS (PARTITION BY e.user_id,e.event_type ORDER BY e."timestamp"
ROWS UNBOUNDED PRECEDING)) AS toto
WHERE toto.agg >= toto.lv - interval '30 days'
GROUP by event_id,user_id,event_type,lv;
Run Code Online (Sandbox Code Playgroud)
由于我必须使用 unnest 和子查询,因此性能实际上变得更糟:
Sort (cost=5344.41..5427.74 rows=33333 width=24)
Sort Key: toto.event_id
-> HashAggregate (cost=2506.99..2840.32 rows=33333 width=24)
Group Key: toto.event_id, toto.user_id, toto.event_type, toto.lv
-> Subquery Scan on toto (cost=67.83..2090.33 rows=33333 width=24)
Filter: (toto.agg >= (toto.lv - '30 days'::interval))
-> WindowAgg (cost=67.83..590.33 rows=100000 width=24)
-> Sort (cost=67.83..70.33 rows=1000 width=24)
Sort Key: e.user_id, e.event_type, e."timestamp"
-> Seq Scan on events e (cost=0.00..18.00 rows=1000 width=24)
Run Code Online (Sandbox Code Playgroud)
我想知道是否可以修改是否只能保留子查询并以某种方式修改窗口框架以仅保留行时间戳之前 30 天或更短的时间戳。您认为是否可以在不切换到 MapReduce 框架的情况下针对非常大的表扩展此查询?
第二次,我想排除重复的事件,即相同的event_type
时间戳。
假设这个已清理的表定义
CREATE TABLE events (
event_id serial PRIMARY KEY
, user_id int
, event_type int
, ts timestamp -- don't use reserved word as identifier
);
Run Code Online (Sandbox Code Playgroud)
您的比较似乎不公平,第一个查询有ORDER BY event_id
,但第二个查询没有。输出EXPLAIN
不适合第一个查询(无排序步骤)。请务必使用相同的子句运行所有测试ORDER BY
以获得有效结果。最好运行几次并比较 5 次中的最佳值以消除缓存影响。
性能的关键是这个多列索引:
CREATE INDEX events_fast_idx ON events (user_id, event_type, ts);
Run Code Online (Sandbox Code Playgroud)
列的顺序很重要!为什么?
您的每个查询都可以改进:
删除group by event_type, user_id
而不替换:
SELECT event_id, user_id, event_type, ts
, (SELECT count(*)
FROM events
WHERE user_id = e.user_id
AND event_type = e.event_type
AND ts >= e.ts - interval '30 days'
AND ts <= e.ts
) AS ct
FROM events e
ORDER BY event_id;
Run Code Online (Sandbox Code Playgroud)
相当于更现代的LATERAL
连接(Postgres 9.3+):
SELECT *
FROM events e
, LATERAL (
SELECT count(*) AS ct
FROM events
WHERE user_id = e.user_id
AND event_type = e.event_type
AND ts >= e.ts - interval '30 days'
AND ts <= e.ts
) ct
ORDER BY event_id;
Run Code Online (Sandbox Code Playgroud)
这也可能是与上述索引结合最快的查询。
相关答案及更多解释:
last_value(ts) OVER w as lv
只是一个昂贵的副本ts
。ROWS UNBOUNDED PRECEDING
是默认值,因此只是噪音。SELECT event_id, user_id, event_type, ts, count(*) AS ct
FROM (
SELECT event_id, user_id, event_type, ts
, unnest(array_agg(ts) OVER (PARTITION BY user_id, event_type
ORDER BY ts)) AS agg
FROM events
) e
WHERE agg >= ts - interval '30 days'
GROUP BY event_id, user_id, event_type, ts
ORDER BY event_id;
Run Code Online (Sandbox Code Playgroud)
但这是不必要的复杂。使用连接而不是使用窗口函数的子查询可以更便宜地获得相同的逻辑:
SELECT e.*, count(*) AS ct
FROM events e
JOIN events x USING (user_id, event_type)
WHERE x.ts >= e.ts - interval '30 days'
AND x.ts <= e.ts
GROUP BY e.event_id
ORDER BY e.event_id;
Run Code Online (Sandbox Code Playgroud)
这是我最喜欢的另一个顶级性能。再次使用上面的索引。
这是另一个想法,但我怀疑它是否可以竞争。不过,请尝试一下:
WITH cte AS (
SELECT event_id, user_id, event_type, ts
, row_number(*) OVER (PARTITION BY user_id, event_type
ORDER BY ts) AS rn
FROM events
)
SELECT e.event_id, e.user_id, e.event_type, e.ts, e.rn - min(x.rn) + 1 AS ct
FROM cte e
JOIN cte x USING (user_id, event_type)
WHERE x.ts >= e.ts - interval '30 days'
AND x.ts <= e.ts
GROUP BY e.event_id, e.user_id, e.event_type, e.ts, e.rn
ORDER BY e.event_id;
Run Code Online (Sandbox Code Playgroud)
SQL Fiddle在 Postgres 9.3 中演示了所有内容。
归档时间: |
|
查看次数: |
3210 次 |
最近记录: |