lau*_*ent 3 postgresql union postgresql-12 postgresql-performance ugly-or
我正在尝试优化一个查询,该查询在 Postgres 12.7 上从未完成。需要几个小时甚至几天的时间才能使 CPU 达到 100%,并且永远不会返回:
SELECT "id", "counter", "item_id", "item_name", "type", "updated_time"
FROM "changes"
WHERE (type = 1 OR type = 3) AND user_id = 'kJ6GYJNPM4wdDY5dUV1b8PqDRJj6RRgW'
OR type = 2 AND item_id IN (SELECT item_id FROM user_items WHERE user_id = 'kJ6GYJNPM4wdDY5dUV1b8PqDRJj6RRgW')
ORDER BY "counter" ASC LIMIT 100;
Run Code Online (Sandbox Code Playgroud)
我随机尝试使用 UNION 重写它,我相信它是等效的。基本上查询中有两部分,一部分用于 type = 1 或 3,另一部分用于 type = 2。
(
SELECT "id", "counter", "item_id", "item_name", "type", "updated_time"
FROM "changes"
WHERE (type = 1 OR type = 3) AND user_id = 'kJ6GYJNPM4wdDY5dUV1b8PqDRJj6RRgW'
) UNION (
SELECT "id", "counter", "item_id", "item_name", "type", "updated_time"
FROM "changes"
WHERE type = 2 AND item_id IN (SELECT item_id FROM user_items WHERE user_id = 'kJ6GYJNPM4wdDY5dUV1b8PqDRJj6RRgW')
) ORDER BY "counter" ASC LIMIT 100;
Run Code Online (Sandbox Code Playgroud)
此查询会在 10 秒内返回,而另一个查询则在几天后才返回。知道是什么造成了如此巨大的差异吗?
对于原始查询:
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------------------------
Limit (cost=1001.01..1697110.80 rows=100 width=119)
-> Gather Merge (cost=1001.01..8625312957.40 rows=508535 width=119)
Workers Planned: 2
-> Parallel Index Scan using changes_pkey on changes (cost=0.98..8625253259.82 rows=211890 width=119)
Filter: ((((type = 1) OR (type = 3)) AND ((user_id)::text = 'kJ6GYJNPM4wdDY5dUV1b8PqDRJj6RRgW'::text)) OR ((type = 2) AND (SubPlan 1)))
SubPlan 1
-> Materialize (cost=0.55..18641.22 rows=143863 width=33)
-> Index Only Scan using user_items_user_id_item_id_unique on user_items (cost=0.55..16797.90 rows=143863 width=33)
Index Cond: (user_id = 'kJ6GYJNPM4wdDY5dUV1b8PqDRJj6RRgW'::text)
Run Code Online (Sandbox Code Playgroud)
对于 UNION 查询:
Limit (cost=272866.63..272866.88 rows=100 width=212) (actual time=10564.742..10566.964 rows=100 loops=1)
-> Sort (cost=272866.63..273371.95 rows=202128 width=212) (actual time=10564.739..10566.950 rows=100 loops=1)
Sort Key: changes.counter
Sort Method: top-N heapsort Memory: 69kB
-> Unique (cost=261604.20..265141.44 rows=202128 width=212) (actual time=9530.376..10493.030 rows=147261 loops=1)
-> Sort (cost=261604.20..262109.52 rows=202128 width=212) (actual time=9530.374..10375.845 rows=147261 loops=1)
Sort Key: changes.id, changes.counter, changes.item_id, changes.item_name, changes.type, changes.updated_time
Sort Method: external merge Disk: 19960kB
-> Gather (cost=1000.00..223064.76 rows=202128 width=212) (actual time=2439.116..7356.233 rows=147261 loops=1)
Workers Planned: 2
Workers Launched: 2
-> Parallel Append (cost=0.00..201851.96 rows=202128 width=212) (actual time=2421.400..7815.315 rows=49087 loops=3)
-> Parallel Hash Join (cost=12010.60..103627.94 rows=47904 width=119) (actual time=907.286..3118.898 rows=24 loops=3)
Hash Cond: ((changes.item_id)::text = (user_items.item_id)::text)
-> Parallel Seq Scan on changes (cost=0.00..90658.65 rows=365215 width=119) (actual time=1.466..2919.855 rows=295810 loops=3)
Filter: (type = 2)
Rows Removed by Filter: 428042
-> Parallel Hash (cost=11290.21..11290.21 rows=57631 width=33) (actual time=78.190..78.191 rows=48997 loops=3)
Buckets: 262144 Batches: 1 Memory Usage: 12416kB
-> Parallel Index Only Scan using user_items_user_id_item_id_unique on user_items (cost=0.55..11290.21 rows=57631 width=33) (actual time=0.056..107.247 rows=146991 loops=1)
Index Cond: (user_id = 'kJ6GYJNPM4wdDY5dUV1b8PqDRJj6RRgW'::text)
Heap Fetches: 11817
-> Parallel Seq Scan on changes changes_1 (cost=0.00..95192.10 rows=36316 width=119) (actual time=2410.556..7026.664 rows=73595 loops=2)
Filter: (((user_id)::text = 'kJ6GYJNPM4wdDY5dUV1b8PqDRJj6RRgW'::text) AND ((type = 1) OR (type = 3)))
Rows Removed by Filter: 1012184
Planning Time: 65.846 ms
Execution Time: 10575.679 ms
(27 rows)
Run Code Online (Sandbox Code Playgroud)
Table "public.changes"
Column | Type | Collation | Nullable | Default
---------------+-----------------------+-----------+----------+------------------------------------------
counter | integer | | not null | nextval('changes_counter_seq'::regclass)
id | character varying(32) | | not null |
item_type | integer | | not null |
item_id | character varying(32) | | not null |
item_name | text | | not null | ''::text
type | integer | | not null |
updated_time | bigint | | not null |
created_time | bigint | | not null |
previous_item | text | | not null | ''::text
user_id | character varying(32) | | not null | ''::character varying
Indexes:
"changes_pkey" PRIMARY KEY, btree (counter)
"changes_id_unique" UNIQUE CONSTRAINT, btree (id)
"changes_id_index" btree (id)
"changes_item_id_index" btree (item_id)
"changes_user_id_index" btree (user_id)
Run Code Online (Sandbox Code Playgroud)
Table "public.user_items"
Column | Type | Collation | Nullable | Default
--------------+-----------------------+-----------+----------+----------------------------------------
id | integer | | not null | nextval('user_items_id_seq'::regclass)
user_id | character varying(32) | | not null |
item_id | character varying(32) | | not null |
updated_time | bigint | | not null |
created_time | bigint | | not null |
Indexes:
"user_items_pkey" PRIMARY KEY, btree (id)
"user_items_user_id_item_id_unique" UNIQUE CONSTRAINT, btree (user_id, item_id)
"user_items_item_id_index" btree (item_id)
"user_items_user_id_index" btree (user_id)
Run Code Online (Sandbox Code Playgroud)
postgres=> select count(*) from changes where type = 1;
count
---------
1201839
(1 row)
postgres=> select count(*) from changes where type = 2;
count
--------
888269
(1 row)
postgres=> select count(*) from changes where type = 3;
count
-------
83849
(1 row)
Run Code Online (Sandbox Code Playgroud)
postgres=> SELECT min(ct), max(ct), avg(ct), sum(ct) FROM (SELECT count(*) AS ct FROM user_items GROUP BY user_id) x;
min | max | avg | sum
-----+--------+-----------------------+---------
6 | 146991 | 2253.0381526104417671 | 1122013
(1 row)
Run Code Online (Sandbox Code Playgroud)
将这些丑陋的OR
内容分成一个UNION
查询通常是一个好主意。看:
使用此部分多列索引,第一个SELECT
查询UNION
应缩短到毫秒:
CREATE INDEX ON changes (user_id, counter)
WHERE type IN (1, 3);
Run Code Online (Sandbox Code Playgroud)
并且添加后ORDER BY counter LIMIT 100
。由于外部查询具有相同的内容,因此我们永远不需要这部分超过 100 行:
( -- now parentheses are required
SELECT id, counter, item_id, item_name, type, updated_time
FROM changes
WHERE type IN (1, 3)
AND user_id = 'kJ6GYJNPM4wdDY5dUV1b8PqDRJj6RRgW'
ORDER BY counter
LIMIT 100
)
Run Code Online (Sandbox Code Playgroud)
您没有提供实际数字,因此从每个用户的大量项目(rows=146991
在查询计划中)来看,尝试将此作为第二个SELECT
:
(
SELECT id, counter, item_id, item_name, type, updated_time
FROM changes c
WHERE type = 2
AND EXISTS (
SELECT FROM user_items u
WHERE u.user_id = 'kJ6GYJNPM4wdDY5dUV1b8PqDRJj6RRgW'
AND c.item_id = u.item_id
)
ORDER BY counter
LIMIT 100
);
Run Code Online (Sandbox Code Playgroud)
结合该指数:
CREATE INDEX ON changes (counter, item_id) WHERE type = 2;
Run Code Online (Sandbox Code Playgroud)
对于显着不同的基数,不同的基数SELECT
可能(好得多)。特别是,这对于拥有很少或没有物品的用户来说会适得其反。
完整的查询如下:
(<query 1>)
UNION
(<query 2>)
ORDER BY counter
LIMIT 100;
Run Code Online (Sandbox Code Playgroud)
是的,总共是 3 倍ORDER BY counter LIMIT 100
。
查询计划显示(never executed)
for SubPlan 1
,这似乎意味着没有type = 2
找到任何行。这很奇怪。(有关可能的解释,请参阅jjanes 的补充答案。)
您正在使用大varchar(32)
ID 进行操作。如果您确实需要全局唯一标识符,请考虑uuid
改为。更小、更快。否则,一个普通的bigint
(甚至integer
)可以轻松覆盖您的 200 万行。使表和索引更小、更快。UNION
也更快。看:
如果做不到这一点,您至少可以添加COLLATE "C"
到varchar(32)
列中以提高UNION
性能(以及所有排序和相关操作)。除非你无论如何都运行数据库COLLATE "C"
,这似乎不太可能。看:
您当前的表格设计很浪费。考虑这样重写:
CREATE INDEX ON changes (user_id, counter)
WHERE type IN (1, 3);
Run Code Online (Sandbox Code Playgroud)
应该使表小约 15 MB(与没有膨胀的原始表相比)并且一切都稍微快一些。看:
归档时间: |
|
查看次数: |
3658 次 |
最近记录: |