空间索引可以帮助“范围-排序-限制”查询吗

ype*_*eᵀᴹ 28 postgresql performance index database-design query-performance

问这个问题,特别是针对 Postgres,因为它对 R 树/空间索引有很好的支持。

我们有下表,其中包含单词及其频率的树结构(嵌套集模型):

lexikon
-------
_id   integer  PRIMARY KEY
word  text
frequency integer
lset  integer  UNIQUE KEY
rset  integer  UNIQUE KEY
Run Code Online (Sandbox Code Playgroud)

和查询:

SELECT word
FROM lexikon
WHERE lset BETWEEN @Low AND @High
ORDER BY frequency DESC
LIMIT @N
Run Code Online (Sandbox Code Playgroud)

我认为覆盖索引(lset, frequency, word)会很有用,但我觉得如果范围内的lset值太多,它可能表现不佳(@High, @Low)

(frequency DESC)有时,当使用该索引的搜索早期产生@N与范围条件匹配的行时,一个简单的索引也可能就足够了。

但似乎性能在很大程度上取决于参数值。

有没有办法让它快速执行,不管范围(@Low, @High)是宽还是窄,也不管高频词是否幸运地在(窄)选择的范围内?

R-tree/空间索引有帮助吗?

添加索引,重写查询,重新设计表,没有限制。

Jac*_*las 30

您可以通过首先在频率较高的行中搜索来获得更好的性能。这可以通过“颗粒化”频率然后按程序逐步执行来实现,例如如下:

--测试台和lexikon虚拟数据:

begin;
set role dba;
create role stack;
grant stack to dba;
create schema authorization stack;
set role stack;
--
create table lexikon( _id serial, 
                      word text, 
                      frequency integer, 
                      lset integer, 
                      width_granule integer);
--
insert into lexikon(word, frequency, lset) 
select word, (1000000/row_number() over(order by random()))::integer as frequency, lset
from (select 'word'||generate_series(1,1000000) word, generate_series(1,1000000) lset) z;
--
update lexikon set width_granule=ln(frequency)::integer;
--
create index on lexikon(width_granule, lset);
create index on lexikon(lset);
-- the second index is not used with the function but is added to make the timings 'fair'
Run Code Online (Sandbox Code Playgroud)

granule 分析(主要用于信息和调整):

create table granule as 
select width_granule, count(*) as freq, 
       min(frequency) as granule_start, max(frequency) as granule_end 
from lexikon group by width_granule;
--
select * from granule order by 1;
/*
 width_granule |  freq  | granule_start | granule_end
---------------+--------+---------------+-------------
             0 | 500000 |             1 |           1
             1 | 300000 |             2 |           4
             2 | 123077 |             5 |          12
             3 |  47512 |            13 |          33
             4 |  18422 |            34 |          90
             5 |   6908 |            91 |         244
             6 |   2580 |           245 |         665
             7 |    949 |           666 |        1808
             8 |    349 |          1811 |        4901
             9 |    129 |          4926 |       13333
            10 |     47 |         13513 |       35714
            11 |     17 |         37037 |       90909
            12 |      7 |        100000 |      250000
            13 |      2 |        333333 |      500000
            14 |      1 |       1000000 |     1000000
*/
alter table granule drop column freq;
--
Run Code Online (Sandbox Code Playgroud)

首先扫描高频的功能:

create function f(p_lset_low in integer, p_lset_high in integer, p_limit in integer)
       returns setof lexikon language plpgsql set search_path to 'stack' as $$
declare
  m integer;
  n integer := 0;
  r record;
begin 
  for r in (select width_granule from granule order by width_granule desc) loop
    return query( select * 
                  from lexikon 
                  where width_granule=r.width_granule 
                        and lset>=p_lset_low and lset<=p_lset_high );
    get diagnostics m = row_count;
    n = n+m;
    exit when n>=p_limit;
  end loop;
end;$$;
Run Code Online (Sandbox Code Playgroud)

结果(时间可能应该加一点盐,但每个查询运行两次以应对任何缓存)

首先使用我们编写的函数:

\timing on
--
select * from f(20000, 30000, 5) order by frequency desc limit 5;
/*
 _id |   word    | frequency | lset  | width_granule
-----+-----------+-----------+-------+---------------
 141 | word23237 |      7092 | 23237 |             9
 246 | word25112 |      4065 | 25112 |             8
 275 | word23825 |      3636 | 23825 |             8
 409 | word28660 |      2444 | 28660 |             8
 418 | word29923 |      2392 | 29923 |             8
Time: 80.452 ms
*/
select * from f(20000, 30000, 5) order by frequency desc limit 5;
/*
 _id |   word    | frequency | lset  | width_granule
-----+-----------+-----------+-------+---------------
 141 | word23237 |      7092 | 23237 |             9
 246 | word25112 |      4065 | 25112 |             8
 275 | word23825 |      3636 | 23825 |             8
 409 | word28660 |      2444 | 28660 |             8
 418 | word29923 |      2392 | 29923 |             8
Time: 0.510 ms
*/
Run Code Online (Sandbox Code Playgroud)

然后使用简单的索引扫描:

select * from lexikon where lset between 20000 and 30000 order by frequency desc limit 5;
/*
 _id |   word    | frequency | lset  | width_granule
-----+-----------+-----------+-------+---------------
 141 | word23237 |      7092 | 23237 |             9
 246 | word25112 |      4065 | 25112 |             8
 275 | word23825 |      3636 | 23825 |             8
 409 | word28660 |      2444 | 28660 |             8
 418 | word29923 |      2392 | 29923 |             8
Time: 218.897 ms
*/
select * from lexikon where lset between 20000 and 30000 order by frequency desc limit 5;
/*
 _id |   word    | frequency | lset  | width_granule
-----+-----------+-----------+-------+---------------
 141 | word23237 |      7092 | 23237 |             9
 246 | word25112 |      4065 | 25112 |             8
 275 | word23825 |      3636 | 23825 |             8
 409 | word28660 |      2444 | 28660 |             8
 418 | word29923 |      2392 | 29923 |             8
Time: 51.250 ms
*/
\timing off
--
rollback;
Run Code Online (Sandbox Code Playgroud)

根据您的真实数据,您可能希望改变颗粒的数量和用于将行放入其中的函数。频率的实际分布在这里很关键,limit条款的预期值和lset范围大小也是如此。


Erw*_*ter 23

设置

我建立在@Jack 的设置之上,让人们更容易关注和比较。用PostgreSQL 9.1.4测试。

CREATE TABLE lexikon (
   lex_id    serial PRIMARY KEY
 , word      text
 , frequency int NOT NULL  -- we'd need to do more if NULL was allowed
 , lset      int
);

INSERT INTO lexikon(word, frequency, lset) 
SELECT 'w' || g  -- shorter with just 'w'
     , (1000000 / row_number() OVER (ORDER BY random()))::int
     , g
FROM   generate_series(1,1000000) g
Run Code Online (Sandbox Code Playgroud)

从这里开始,我采取了不同的路线:

ANALYZE lexikon;
Run Code Online (Sandbox Code Playgroud)

辅助表

此解决方案不会向原始表添加列,它只需要一个很小的辅助表。我将它放在 schema 中public,使用您选择的任何 schema。

CREATE TABLE public.lex_freq AS
WITH x AS (
   SELECT DISTINCT ON (f.row_min)
          f.row_min, c.row_ct, c.frequency
   FROM  (
      SELECT frequency, sum(count(*)) OVER (ORDER BY frequency DESC) AS row_ct
      FROM   lexikon
      GROUP  BY 1
      ) c
   JOIN  (                                   -- list of steps in recursive search
      VALUES (400),(1600),(6400),(25000),(100000),(200000),(400000),(600000),(800000)
      ) f(row_min) ON c.row_ct >= f.row_min  -- match next greater number
   ORDER  BY f.row_min, c.row_ct, c.frequency DESC
   )
, y AS (   
   SELECT DISTINCT ON (frequency)
          row_min, row_ct, frequency AS freq_min
        , lag(frequency) OVER (ORDER BY row_min) AS freq_max
   FROM   x
   ORDER  BY frequency, row_min
   -- if one frequency spans multiple ranges, pick the lowest row_min
   )
SELECT row_min, row_ct, freq_min
     , CASE freq_min <= freq_max
         WHEN TRUE  THEN 'frequency >= ' || freq_min || ' AND frequency < ' || freq_max
         WHEN FALSE THEN 'frequency  = ' || freq_min
         ELSE            'frequency >= ' || freq_min
       END AS cond
FROM   y
ORDER  BY row_min;
Run Code Online (Sandbox Code Playgroud)

表看起来像这样:

row_min | row_ct  | freq_min | cond
--------+---------+----------+-------------
400     | 400     | 2500     | frequency >= 2500
1600    | 1600    | 625      | frequency >= 625 AND frequency < 2500
6400    | 6410    | 156      | frequency >= 156 AND frequency < 625
25000   | 25000   | 40       | frequency >= 40 AND frequency < 156
100000  | 100000  | 10       | frequency >= 10 AND frequency < 40
200000  | 200000  | 5        | frequency >= 5 AND frequency < 10
400000  | 500000  | 2        | frequency >= 2 AND frequency < 5
600000  | 1000000 | 1        | frequency  = 1
Run Code Online (Sandbox Code Playgroud)

由于该列cond将在更深入的动态 SQL 中使用,因此您必须确保该表安全。如果您不能确定适当的 current search_path,请始终对表进行模式限定,并从public(和任何其他不受信任的角色)撤消写入权限:

REVOKE ALL ON public.lex_freq FROM public;
GRANT SELECT ON public.lex_freq TO public;
Run Code Online (Sandbox Code Playgroud)

该表有lex_freq三个用途:

  • 自动创建所需的部分索引
  • 提供迭代函数的步骤。
  • 用于调整的元信息。

索引

DO语句创建所有需要的索引:

DO
$$
DECLARE
   _cond text;
BEGIN
   FOR _cond IN
      SELECT cond FROM public.lex_freq
   LOOP
      IF _cond LIKE 'frequency =%' THEN
         EXECUTE 'CREATE INDEX ON lexikon(lset) WHERE ' || _cond;
      ELSE
         EXECUTE 'CREATE INDEX ON lexikon(lset, frequency DESC) WHERE ' || _cond;
      END IF;
   END LOOP;
END
$$
Run Code Online (Sandbox Code Playgroud)

所有这些部分索引一起跨越表一次。它们与整个表上的一个基本索引的大小大致相同:

SELECT pg_size_pretty(pg_relation_size('lexikon'));       -- 50 MB
SELECT pg_size_pretty(pg_total_relation_size('lexikon')); -- 71 MB
Run Code Online (Sandbox Code Playgroud)

到目前为止,50 MB 的表只有 21 MB 的索引。

我在 上创建了大部分部分索引(lset, frequency DESC)。第二列仅在特殊情况下有帮助。但是由于两个涉及的列都是 type integer,由于数据对齐的细节与 PostgreSQL 中的MAXALIGN 结合,第二列不会使索引变大。这是一个几乎没有任何成本的小胜利。

对于仅跨越单个频率的部分索引,这样做毫无意义。那些只是在(lset)。创建的索引如下所示:

CREATE INDEX ON lexikon(lset, frequency DESC) WHERE frequency >= 2500;
CREATE INDEX ON lexikon(lset, frequency DESC) WHERE frequency >= 625 AND frequency < 2500;
-- ...
CREATE INDEX ON lexikon(lset, frequency DESC) WHERE frequency >= 2 AND frequency < 5;
CREATE INDEX ON lexikon(lset) WHERE freqency = 1;
Run Code Online (Sandbox Code Playgroud)

功能

该函数在风格上与@Jack 的解决方案有些相似:

CREATE OR REPLACE FUNCTION f_search(_lset_min int, _lset_max int, _limit int)
  RETURNS SETOF lexikon
$func$
DECLARE
   _n      int;
   _rest   int := _limit;   -- init with _limit param
   _cond   text;
BEGIN 
   FOR _cond IN
      SELECT l.cond FROM public.lex_freq l ORDER BY l.row_min
   LOOP    
      --  RAISE NOTICE '_cond: %, _limit: %', _cond, _rest; -- for debugging
      RETURN QUERY EXECUTE '
         SELECT * 
         FROM   public.lexikon 
         WHERE  ' || _cond || '
         AND    lset >= $1
         AND    lset <= $2
         ORDER  BY frequency DESC
         LIMIT  $3'
      USING  _lset_min, _lset_max, _rest;

      GET DIAGNOSTICS _n = ROW_COUNT;
      _rest := _rest - _n;
      EXIT WHEN _rest < 1;
   END LOOP;
END
$func$ LANGUAGE plpgsql STABLE;
Run Code Online (Sandbox Code Playgroud)

主要区别:

  • 动态 SQLRETURN QUERY EXECUTE.
    当我们循环执行这些步骤时,可能会受益于不同的查询计划。静态 SQL 的查询计划生成一次然后重用 - 这可以节省一些开销。但在这种情况下,查询很简单,而且值非常不同。动态 SQL 将是一个巨大的胜利。

  • LIMIT每个查询步骤都是动态的。
    这有多种帮助:首先,仅根据需要获取行。结合动态 SQL,这也可能会生成不同的查询计划。第二:不需要LIMIT在函数调用中额外修剪多余的部分。

基准

设置

我选择了四个示例,并对每个示例进行了三个不同的测试。我把最好的五个与热缓存进行比较:

  1. 表单的原始 SQL 查询:

    SELECT * 
    FROM   lexikon 
    WHERE  lset >= 20000
    AND    lset <= 30000
    ORDER  BY frequency DESC
    LIMIT  5;
    
    Run Code Online (Sandbox Code Playgroud)
  2. 创建此索引后相同

    CREATE INDEX ON lexikon(lset);
    
    Run Code Online (Sandbox Code Playgroud)

    需要与我所有部分索引相同的空间:

    SELECT pg_size_pretty(pg_total_relation_size('lexikon')) -- 93 MB
    
    Run Code Online (Sandbox Code Playgroud)
  3. 功能

    SELECT * FROM f_search(20000, 30000, 5);
    
    Run Code Online (Sandbox Code Playgroud)

结果

SELECT * FROM f_search(20000, 30000, 5);
Run Code Online (Sandbox Code Playgroud)

1:总运行时间:315.458 ms
2:总运行时间:36.458 ms
3:总运行时间:0.330 ms

SELECT * FROM f_search(60000, 65000, 100);
Run Code Online (Sandbox Code Playgroud)

1:总运行时间:294.819 ms
2:总运行时间:18.915 ms
3:总运行时间:1.414 ms

SELECT * FROM f_search(10000, 70000, 100);
Run Code Online (Sandbox Code Playgroud)

1:总运行时间:426.831 ms
2:总运行时间:217.874 ms
3:总运行时间:1.611 ms

SELECT * FROM f_search(1, 1000000, 5);
Run Code Online (Sandbox Code Playgroud)

1:总运行时间:2458.205 毫秒
2:总运行时间:2458.205 毫秒——对于大范围的 lset,seq 扫描比索引快。
3:总运行时间:0.266 毫秒

结论

正如预期的那样,函数的好处随着 的范围越来越大lset和越来越小而增长LIMIT

对于非常小的范围lset,原始查询与索引的结合实际上更快。你会想要测试,也许分支:小范围的原始查询lset,否则函数调用。您甚至可以将其构建到“两全其美”的功能中 - 这就是我要做的。

根据您的数据分布和典型查询,更多步骤lex_freq可能有助于提高性能。测试以找到最佳位置。使用这里介绍的工具,它应该很容易测试。